说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 三步迭代算法
1)  three-step iterative algorithm
三步迭代算法
1.
A novel and innovative three-step iterative algorithm to compute approximate solution was constructed.
证明了此类集值强非线性混合变分不等式辅助问题解的存在性和唯一性;构建了一个新的三步迭代算法,通过辅助原理技巧,构建并计算此类非线性混合变分不等式的近似解,进一步证明非线性混合变分不等式解的存在性以及由算法产生的三个序列的收敛性。
2)  Triply Iterative Algorithm(TIA)
三迭代算法
1.
Furthermore,a regular Triply Iterative Algorithm(TIA) following the gradient descent idea is used to seek the minimum point of the tri-quadratic cost function by alternately estimating one of the three independent variables parameter subsets,obtaining a column block of the unitary matrix.
利用一种常规的基于梯度下降法的三迭代算法,交替估计代价函数中的3组待定参数,搜索其最小点,得到酉矩阵一个列块的估计。
2.
A new triply iterative algorithm(TIA) following the gradient descent idea is developed to minimize a novel least squares cost function named tri-quadratic cost function which is used to express the approximation of joint block-inner diagonalization.
为了求解表征联合块内对角化近似程度的基于最小二乘的三二次代价函数,给出基于梯度下降法的三迭代算法。
3)  asynchronous iterative algorithm
异步迭代算法
1.
Rockburst forecast based on asynchronous iterative algorithm;
基于异步迭代算法的冲击地压预测
4)  two-step iterative algorithm
双步迭代算法
5)  steping iterative algorithm
分步迭代算法
6)  three-step iterative method
三步迭代方法
补充资料:迭代算法


迭代算法
iteration algorithm

  迭代算法〔i恤腼吨函d朋;HTep叫“ouH‘~p“仪] 由点到集合的一个映射序列A*所确定的递推算法,其中A*:V一V,V是一个拓扑空间,对于某初始点““任v,可依下式计算点列。“任V, 。“+,一注*。“,儿=o,l,·…(l)称算子(1)为迭代(i把mt沁n),而序列{。“}为迭代序列(itemti祀s叫uence). 迭代法(jtemtionn犯thod)(或迭代逼近法(me-thod of iterati记appro汕na石on”应用于求下面算子方程的解 通。”f,(2)即某泛函的极小值,求方程Au=又“的本征值和本征向量等,同时也用来证明这些问题解的存在性.如果对于一个初始近似。。,当k一的时:‘~。,则称迭代方法(l)收敛到问题的解u. 求解(2)的线性度量空间V上的算子A*一般由下式构造 注*况几=。七一H*(A。友一f),(3)其中{H*二V~V}是由某迭代型方法所确定的算子序列.压缩映射原理(c ontraCting .n分pp吨pnn-ciPle)及真摧户,’或著向题的泛函变分极小化方法都是建立在构造形如(l),(3)的迭代法基础之上.所使用的构造A七的各种方法有Newton法(Newton脸thod)或下降法(d留cent,n祀th(记of)的诸多变形.人们尝试选取H*使得在一定条件下。止~u的快速收敛得到保证,这些条件要求计算机存储空间确定后算子A*u六的数值实现充分简单,有尽可能低的复杂性而且数值稳定.求解线性问题的迭代法得到了很好的发展和深人的研究.该迭代法这里分为线性与非线性两大类.Ga.法(Ga璐nr目兀心),Sd翻法(Sei-delrr℃th司),逐次超松弛法(见松弛法(侧公爪沁n1优thod))和带有tle氏皿eB参数的迭代法属于线性方法;变分法(如最速下降法,共扼梯度法和极小偏差法(mi曲nal discrepancyn坦thod))等.见最速下降法(s吹p巴t把ceni,皿thi对of);共扼梯度法(eonju,te脚dients,此山记of)属于非线性方法.最有效的迭代法之一是使用tIe玩IIDeB参数(Che勿shevP~t-ers),这里A是一个带有〔。,M』上谱的自相伴算子,M>m>0.这个方法提供了关于预先指定的第n步收敛性最优(对谱边界上的给定信息)估计.方法可描述为 “‘+’=“一“*十1(通。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条