1) bounded domain
有界域
1.
Introducing the real parametersand p constructing a more extensive unitresolution and an abstract kernel function, we extend the form of Cauchy-Leray formula in[3],and obtain an extended form of Cauchy-Fantappiè for functions on bounded domains with piecewise smooth boundary.
引进实参数p建立了更为广泛的单位分解和抽象核函数,推广文[3]的Cauchy-Leray公式,并得到了具有逐段光滑边界的有界域上Cauchy-Fantappi埁公式的一种拓广形式,并适当选取其中的实参数和向量函数时,得到至今许多区域上光滑函数和全纯函数种种已有的抽象公式和具体的积分公式。
2.
In this paper, we obtain an integral representation of extensional Bochner-Martinelli kernel with weight factors of (0, q) differential form on bounded domains and strongly pseudoconvex domain with piecewise smooth boundary in Cn, that is, we obtain an extensional Koppelman-Leray-Norguet formula with weight factors.
本文讨论了Cn空间中具有逐块光滑边界的有界域上和强拟凸域上具有拓广的B-M核的(0,q)形式的带权因子的积分表示式,得到了带权因子拓广的Koppelman- Leray-Norguet公式。
3.
In this paper,we obtain an extension of Cauchy-Leray formula and Cauchy-Fantappiè formula on bounded domains in including vector functions in kernel.
本文得到Cn中有界域上积分核含有向量函数的Cauchy-Leray和Cauchy-Fantappiè的拓广式,同时还可以得到Cn空间中有界域上全纯函数著名的Cauchy-Fantappiè公式的一种积分核含有向量函数的拓广式,在公式中适当的选取参数,可以得到至今许多区域上光滑函数和全纯函数种种已有积分公式。
2) bounded domain
有界区域
1.
Generalized solution for a non-Newtonian viscous compressible fluid in 3D-bounded domains;
三维有界区域中非牛顿可压缩流体的广义解
2.
Let Ω be a bounded domain of R N with smooth boundary Ω.
设 Ω 为 RN中具有光滑边界 Ω 的有界区域 ,文章在适当的条件下讨论了一类含 p-Laplacian的拟线性椭圆型方程的多解性问题。
3) Bounded convex domain
有界凸域
4) ultimately bounded domain
最终有界域
1.
By constructing the ultimately bounded domain and Lyapunov function, it is proved that the system can be made persistent under some appropriate conditions.
通过构造该系统的最终有界域和利用Lyapunov 函数方法,证明了在适当的条件下,该系统是持续生存的,并且若该系统为周期系统,则存在惟一渐进稳定的正周期解。
5) bounded dosed region
有界团区域
6) Bounded closed domain
有界闭区域
1.
In this paper,using the property of continuous functions of two variables on bounded closed domains in mathematical analysis,we prove that for f(z)=zn+b1zn-1+.
利用数学分析中在有界闭区域上二元连续函数的性质,首先证明f(z)=z~n+b_1z~(n-1)+…+b_nz_0∈C,使然后用反证法证明z_0就是一根。
补充资料:界域
1.犹境域。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条