1) varied limit function
变限函数
1.
This article explores the application of the property in varied limit function to the limit,derived number,succession and integration and a new solution to such function is discussed.
探讨变限函数的性质在极限、导数、连续性及积分等方面的应用,给出了解决类似于函数问题的新思路。
2) variable upper limit equation
变上限函数
1.
The paper gives four kinds of differential equation and their expressions; and by means of derivation method of functional iteration and variable upper limit equation it discusses about their integrality.
提出四类积分微分方程组,借助函数迭代法及变上限函数的求导法则,论证其可积性,前三个定理给出求解公式,列举了实例。
3) variable lower limit function
变下限函数
4) uncertain limit integral functions
变限积分函数
5) function of limited variation
有限变分函数
6) deformation limit state function
变形极限状态函数
1.
The method of numerical calculus was combined with recurrence formula,to generate deformation limit state function of continual variational structure.
基于我国《建筑结构设计统一标准》的极限状态设计原则 ,结构物不允许出现影响正常使用的外观变形 ,提出了刚架结构位移连续变更方法·用数值分析与递推公式相结合的方法 ,实现连续变更结构的变形极限状态函数的连续生成·重分析不必重新形成结构刚度矩阵 ,不必反复求逆矩阵 ,使得识别系统主要失效模式的方法得以简化 ,有效地提高了计算时效 ,并为刚度可靠性分析提供了新方法·算例验证了方法的正确性及实用性
补充资料:变分原理(复变函数论中的)
变分原理(复变函数论中的)
omplex function theory) variational principles (in
f日In}F(O(只,t),0)l}乙+:d乙=】nll,—}——,厂:’、一几t)〔.匕,日亡卜OC一“C’日当r,0时下*(:、,t)/:在B*的紧子集上一致地趋于0(k一1,2).该结果已被推广到二连通区域(13」).若加以进一步的限制,就能得到映射函数在B、(t)内关于表征所考虑区域边界形变的参数的展开式余项的估计式(在闭区域内一致)(【4」).份卜注】存在大量的变分原理,见【A3}第10章.亦可见变分参数法(variation一parametrie nlethod);肠”ner方法(幼wner Tnetl〕ed);内变分方法(internalvariations,服t】1‘对of). 还可见边界变分方法(boundary variations,me-tll‘xlof).M.schiffer对单叶函数的变分方法做出了重要的贡献,见〔A3」第10章.变分原理(复变函数论中的)Ivaria石0“目州址妙es(加e网Plex五叮‘6佣山印ry);。即“a双“OHH从e nP一”u“nHI 显示在平面区域的某些形变过程中那些支配映射函数变分的法则的断语. 主要的定性变分原理是ljxlelbf原理(Linde场fpnnciPle),可描述如下.设B*是z*平面上边界点多于一点的单连通区域,06B*,k=1,2;设二(;,B*)是对于B*的Green函数的阶层曲线,即圆盘王心川C!<1}到B*而使原点保持不变的单叶共形映上映射下圆周C(r)二{乙:{心}二;}的象,o<;<1.进而设函数f(:,)实现B,到B:的共形单射,f(0)‘O,在这些假定下有:l)对于L(:,B,)上任一点:?,存在位于阶层曲线L(:,BZ)上(这仅当f(B,)二BZ才有可能)或其内部的一点与之对应;及2){f’(0)1蕊}夕‘(0)},其中g(:,)满足g(0)二o是Bl到 BZ的单叶共形映射(等号仅当f(B1)=B:时成立).Lindebf原理系从Rien坦nn映射定理(见Rle-n.lln定理(Rierl飞幻In theorem))与Sdlwarz引理(Schwarz lemrr必)推出.相当精细的构造使之能够求出由被映射区域的给定形变所引起的映射函数的逐点偏差. 定量的基本变分原理系由M.A.几aBpeHTbeB(〔1」)获得(亦可见【2]),可叙述如下,设B:是具有解析边界的单连通区域,0任B!.假定存在给定区域族B,(r),0‘Bl(r),0(t蕊T,T>O,B;(0)二B,,具有JOrdan边界rl(t)={:一z,=0(之,t)},0(又续2兀,0(0,t)二Q(2二,r),其中Q(又,r)关于t在t二O可微且对又是一致的;设F(::,t),F(0,t)=0,F:.(0,t)>O,是把B,(t)单叶共形映射为BZ二{22:I:21
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条