1) matrix power series
矩阵幂级数
1.
According to the definition of matrix power series and the convergence property of the power series,using the type compare method,the thesis got and verified part convergence properties of the matrix power series.
根据矩阵幂级数的定义和数学分析中幂级数的收敛性质,运用类比的推理法,得到并验证了矩阵幂级数的部分相应的收敛性质。
2) matrix progression
矩阵级数
1.
With the help of matrix number and matrix music radius concepts, combined with the conclusion about the limit and numeral progession, judgmnet methods and character of matrix progression unanimous convergence are provided.
借助矩阵范教和矩阵谱半径的概念,结合极限理论和数项级数的有关结论,给出了矩阵级数一致收敛的判定和性质。
2.
with the help of matrix number and matrix music radius concepts,combined with the conclusion about the limit and numeral progression,the paper gives judgement methods of matrix progression unanimous convergence.
借助矩阵范数和矩阵谱半径的概念,结合极限理论和数项级数的有关结论,给出了矩阵级数一致收敛的判定方法。
3.
Under the concepts of matrix progression and matrix norm and with the combination of limit theory, numerical progression and their related conclusions, two methods are given on how to decide the absolute convergence of matrix progression.
借助矩阵级数和矩阵范数的概念,结合极限理论和数项级数的有关结论,给出了矩阵级数绝对收敛的两种判定方法。
3) matrix series
矩阵级数
1.
he matrix function, matrix series and exponential matrix are defined.
定义了矩阵函数,矩阵级数及指数矩阵。
4) power reciprocal GCD matrix
倒数幂GCD矩阵
6) power matrices
可幂矩阵
补充资料:渐近幂级数
渐近幂级数
asymptotic power series
渐近幕级数[asymp峭c脚wer series;a~or.,.,.翻cra暇”曰甫p朋] 关于序列 {x一”}(x*oo)或者序列 {(x一x。)n}(x*x。)的渐近级数(见函数的渐近展开(asymPtotic exPan-sion)).渐近幂级数可以象收敛幂级数那样进行加、乘、除和积分运算. 设两个函数f(x)和g(x)当x~co时具有下列渐近展开 巴a_畏瓦 f(X)~》:—,g《义)~夕一一丁. 子二〕x“石诬b厂’这时,有 畏Aa.+Bb. l、Af(x、+Bg〔x)~)’— n=OX’(A,B为常数); 华耘C. ‘11(X,gIX】~): ,三劝X” 11恩d- ,,商一j0--+患访,a“铸o饥,d。可象对收敛幂级数那样来计算); 4)如果函数f(x)当x>a>O时是连续的,则 二f 0.)。。 ,l_“11_奋气“n+1 口1 111.一口n一—l口t~夕—, 二「‘J曰nx~(5)渐近幕级数汗不总能进行微分,但是如果八劝典有能够展外为渐近幂级数的连续导数,则 “一’一盘竺黔 渐迈幂级数的例r_ )令、一只已.兴二; 召e‘介冲r一l丫lr佃十12邓 V大e月卜’tX二卜一)、一仁“_“_ 一,月}之.户乙.,丫月 门一0乙一叮一n二X〕t门,I了六“(、)是零阶Hankel函数(Hankel rbncl,()ns)日面的渐近幂级数对}一切_、发散). 对少复变量一的函数,在无穷远点的邻域内或者在‘卜角内,当:),时,类似的结论也成立.在复变量的J清况拜5)只有厂列形式:如果函数f(:)在区域I)一{曰一>“一,长盯g二}<川中是正则的,并且在包含干l)巾的任何闭角囚、当{:},羌川,依盯g:一致地有 半乙a, I饭2.~)— 月二02则在包含于I)中}〔何闭角内,’绳:{卜二时,依盯g: 致地有 浮乙I奋口. f了夕、~一、,一‘二一 价而z’
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条