1) power GCD matrix
幂GCD矩阵
1.
In this paper,a necessary and sufficient conditions on the gcd closed set S with |S|=4 such that the power GCD matrix(Se)on S divides the power LCM matrix on S in the ring M4(Z) of 4×4 matrices over the integers is proved.
在本文中,我们给出了关于四元gcd封闭集S的充分必要条件,使得在环M4(Z)中,定义在S上的e次幂GCD矩阵(Se)整除e次幂LCM矩阵[Se]。
2) power reciprocal GCD matrix
倒数幂GCD矩阵
3) The inverses of GCD and LCM matrices
GCD和LCM幂矩阵的逆矩阵
4) GCD matrix
GCD矩阵
1.
It is proved in this paper that if S consists of two relatively prime divisor chains,then the GCD matrix on S divides the LCM matrix on S.
作者证明:若S由两个互素的因子链构成,那么在n阶整数矩阵环中,GCD矩阵(S)整除LCM矩阵[S]。
2.
The n×n matrix whose (i,j)-entry is the greatest common divisor (xi,xj)of xi and xj is called the GCD matrix on S, denoted by (S).
我们称以xi和xj的最大公因子(xi,xj)为(i,j)项的n×n矩阵为定义在集合S上的GCD矩阵,记为(S)。
6) power matrices
可幂矩阵
补充资料:彻幂
1.见"彻幂"。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条