说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 相伴随机变量
1)  associated random variables
相伴随机变量
1.
A functional type of almost sure central limit theorem is given for a sequence of stationary associated random variables,under the assumption that L(n)=Var X_1+2 sum from n to j=2 Coy(X_1,X_j) is a slowing varying function at infinity.
对于均值为零的平稳相伴随机变量序列,首先证明了在L(n)=EX_1~2+ 2 sum from n to j=2 Cov(X_1,X_j)是一个缓变函数的条件下的泛函型几乎处处中心极限定理。
2)  negatively associated Gaussian sequences
负相伴高斯随机变量序列
1.
In this paper,by applying the Skorohod martingale embedding theorem,we prove a strong invariance principle for negatively associated Gaussian sequences under power decay rates.
利用鞅的Skorohod表示,在序列是高斯的且序列的协方差系数以幂指数速度递减的条件下,证明了负相伴高斯随机变量序列的一个强不变原理。
3)  associated variable
相伴变量
4)  concomitant variable
为伴随变量
5)  correlative random varibles
相关随机变量
1.
In this paper,a method of calculating structural four-moment reliability with correlative random varibles is proposed,and the approximative formula for calculting the first four-moment of performance function is chiefly set up.
本文提出含有相关随机变量结构四阶矩可靠度的计算方法,主要推导了功能函数前四阶矩的近似计算公式。
6)  mutually tolerated random variable
相容随机变量
1.
It excels the current direct sum of mutually tolerated random variable and reforming non - joint sum algorithm.
求解随机变量之和概率的算法,是可靠性分析的理论基础,文章导出一种新的割集消去算法,它优于目前的相容随机变量直接求和法与变换不交和算法,能使计算机辅助运算时间大幅度降低。
补充资料:水文随机变量
      受随机因素影响,遵循统计规律变化的水文变量。水文随机变量在未来任一时刻出现的数值无法准确预测,但能以分布函数(或等价的概率密度函数)来反映其统计规律性,也就是表示其各种数值出现的可能性。分布函数的形式,可根据资料按水文统计学的有关原理和方法予以确定。分布函数与概率密度函数则有如下关系:
  
  式中x为随机变量;F(xp;)为分布函数; f(t;θ)为概率密度函数;为x大于或等于xp这一事件出现的概率;xp称为x的p分位数,或超过概率为p的设计值。上式常以图形的方式表示,称为频率曲线(见图)。
  
  
  确定水文随机变量的分布函数及其所含的参数,是研究水文随机变量的主要目的。水文学中常用的分布函数有以下几种:皮尔逊Ⅲ型分布、对数皮尔逊Ⅲ型分布、对数正态分布、 概化极值分布、 韦克贝分布、克里茨基-门克尔分布等。在中国主要使用皮尔逊Ⅲ型分布。其概率密度函数如下:
  
  x≥α γ0
  式中α、β、γ 为待估参数;Γ(γ )为伽玛函数。三个参数α、β、γ 与随机变数 x的三个主要数字特征值(数学期望Ex、方差σ婌、偏态系数Cs)有一定的关系,可相互推求。这种情况对其他分布也是如此。不过不同的分布,参数与特征值之间的关系不同而已。在参数估计时,有的方法,如极大似然法,是先估计参数α、β、γ ,然后由有关公式可求得相应的Ex、Cv(离势系数)与Cs;有的方法,如矩法或适线法,是先估计出Ex、Cv及Cs,需要时,可由有关公式求出相应的参数值。
  
  确定水文随机变量分布函数的形式,除用上述假设检验的方法外(见水文统计学),还使用导出分布的方法,即考虑水文变量的物理性质并做若干假定,再经推导而得。其中又可分为依据事件的模型和联合概率的模型。由于问题复杂,为便于推导而作的假定常与实际情形相差较远,故此种途径尚处于研究阶段,有时可在缺乏资料的小流域上应用。
  
  

参考书目
   V.Yevjevich, Probability and Statistics in Hydrology,Water Resources Publications,FortCollins,Colorado,1972.
  

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条