1) Tchebycheff polynomials
Tchebycheff多项式
1.
The weakly asymptoticly order for the average error of the Hermite-Fejer interpolation polynomials based on the zeros of Tchebycheff polynomials of the second kind in the Wiener space is obtained.
得到了以第二类Tchebycheff多项式的零点为插值结点组的Hermite-Fejer插值多项式在Wiener空间下的平均误差的弱渐进阶。
2.
The weakly asymptoticly order for the average error of the quasi-Hermite-Fejer interpolation polynomials based on the zeros of Tchebycheff polynomials of the second kind in the Wiener space is obtained.
得到了以第二类Tchebycheff多项式的零点为插值结点组的拟Hermite-Fejer插值多项式在Wiener空间下平均误差的弱渐近阶。
3.
The weakly asymptotic order for the average error of the Lagrange interpolation polynomials based on the zeros of Tchebycheff polynomials of the second kind in the Wiener space is obtained.
得到了以第二类Tchebycheff多项式的零点为插值结点组的Lagrange插值多项式在Wiener空间下的平均误差的弱渐近阶。
2) Tchebycheff Hermite multinomial
Tchebycheff-Hermite多项式
1.
This paper extends the Roll theorem and with the result, discusses the distribution of zero point in the Legender and Tchebycheff Hermite multinomials.
推广了Roll定理,并用该结果讨论了Legender多项式和Tchebycheff-Hermite多项式零点分布。
3) Tchebycheff's inequality
Tchebycheff不等式
4) Tchebycheff's integral inequality
Tchebycheff积分不等式
5) polynomials/chromatic polynomials
多项式/色多项式
6) lacunary polynomial
缺项多项式
1.
The necessary and sufficient conditions are obtained for the lacunary polynomials to be dense in C_α,where C_α is the weighted Banach space of complex continuous functions f(t) on R with f(t)exp{-α(t)} vanishing at infinity.
设函数α(t)在R上非负连续,Cα是R上满足lim|t|→∞f(t)e-α(t)=0的连续函数f(t)全体组成的Banach空间,得到了一个缺项多项式在Cα空间中稠密的充分必要条件。
补充资料:多项式乘多项式法则
Image:1173836820929048.jpg
先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。