1) nonlinear Klein-Gordon equation
非线性Klein-Gordon(NKG)方程
2) nonlinear Klein-Gordon equation
非线性Klein-Gordon方程
1.
A new function expansion method and new exact solutions to nonlinear Klein-Gordon equation;
新的函数展开法与非线性Klein-Gordon方程新的准确解
2.
A class nonlinear Klein-Gordon equation with harmonic potential:u_(tt)-Δu+|x|~2u+mu=a|u|~pu+b|u|~qu,x∈R~N,t>0,u=u(t,x):R~+×R~N→C is studied.
运用能量和微分、积分不等式技巧,讨论一类带调和势的非线性Klein-Gordon方程utt-Δu+|x|2u+mu=a|u|pu+b|u|qu,x∈RN,t>0,其中,u=u(t,x):R+×RN→C的初值问题,得到了在一定条件下解的不稳定性质。
3.
The new exact solutions and the solitary wave solutions are obtained by using transformation relation of the cubic nonlinear Klein-Gordon equation.
通过行波约化一类(2+1)维非线性波动方程和建立与立方非线性Klein-Gordon方程间变换的联系,由此得到其精确解和孤立波解。
3) cubic nonlinear Klein-Gordon equation
立方非线性Klein-Gordon方程
1.
By using the traveling wave reduction method and the homogeneous balance method,the problem of the solving the system is transformed the problem of solving the ODE,and the exact solutions to the system are obtained with the aid of exact solutions to the cubic nonlinear Klein-Gordon equation.
利用行波约化方法和齐次平衡法,并借助一维立方非线性Klein-Gordon方程的精确解,将方程组的求解问题转变成一个常微分方程组的求解问题,并求出了此方程组新的精确解,最后给出耦合方程组的几组具体的精确解。
4) nonlinear intensity Klein-Gordon-type equation
非线性强度Klein-Gordon型方程
5) coupled nonlinear Klein-Gordon equation
藕合非线性Klein-Gordon方程
1.
Improved F-expansion method and exact solutions for coupled nonlinear Klein-Gordon equation;
改进的F-展开方法和藕合非线性Klein-Gordon方程的精确解
6) nonlinear Klein-Gordon equations
非线性Klein-Gordon方程组
1.
By constructing appropriate transform,solving the coupled nonlinear Klein-Gordon equations becomes to solving algebraic equations.
通过构造适当的函数变换,把求解非线性Klein-Gordon方程组转化为求解代数方程组,从而得到了非线性Klein-Gordon方程组的某些精确解。
补充资料:Klein-Gordon方程
Klein-Gordon方程
Klan -Gordon equation
K目。一G.油阅方程【扣巨,一C.汕恤阅钾公门;R搜如a一rop-助HayP姗elt“el 描述零自旋标量或鹰标量粒子,例如二介子和K介子的相对论性不变的量子方程.该方程先是由0 .Kjein(【11)和稍后由巾.A.OoK作为第五个坐标为循环坐标的条件下的波动方程建立起来的,不久以后由多位作者(例如,W .Goldon(〔21))在不用对第五个坐标的这个要求的条件下推导了出来. 后来的应用证明了,幻日五~C心川。n方程作为相对论性量子方程只有在且子场论(甲坦址帅企」d theo习)中才是可能的,而不是在量子力学中.在「3]中给出了幻ein一C泊川。n方程作为零自旋粒子的场的方程的解释.K】ein .C沁攻场n方程适用于描述兀介子及相应场;它作为量子场论基本方程之一起作用. 月ein~6。川on方程是常系数线性齐次二阶偏微分方程:「刁,刁,a,刁,.1}花二了+-二万一+爪花了一下玉飞二了一料z}职=0,(l)L刁x‘刁夕‘刁z‘cz at,尸J丫其中甲(x,约是一个(腰)标量函数,在一般情况下为复函数,户=mc/大,m是粒子的静质量.若职是实函数,则习cill一GOldon方程描述中性(鹰)标量粒子;而当势是复函数时,则它描述带电粒子, 在后一情况下,(l)要补充以复共扼标量函数甲‘的方程: [刁2刁2日2日2,1 卜丁二了+飞丁了+下几了一二犷二二-一拜‘}职中=0.,、 L日x‘口夕‘刁z‘c‘口t‘尸J丫一’(么) (腰)标量粒子与电磁场的相互作用,由最省代换创日扩~a/日扩一ieA二/有来描述.任何自旋粒子波函数的每个分量也满足幻eln(沁司。n方程.但只有对于自旋为O的情况,函数相对于助代泊忱一Po证care群才是不变的. K】ein~(〕。川。n方程可借助于狭义相对论中粒子的能量E和动量p之间的关系 告EZ一,卜,卜p圣一’“’,通过将物理量用算子代替(见t41,〔51)二 。大刁充a E~一牛下,p~井-;, 一i口t’丈’i口x而获得.像所有相对论性方程那样,幻cin一Goldon方程可以表达成肠口c方程(D哪闪脸UOn)的形式,也就是说,它可以化成一阶线性方程: 「__日1. }r’花下二~一拼!少二0,(3) L一刁x‘『」了其中系数r,是类似于侧比c矩阵(Dirac Inatria沼)尹的矩阵.在Klein{池川。n方程的情况下,矩阵r.满足对易关系: r,Yv几+r,r,r;=叮,,r,+刀p,r;·(4)例如,(r。)’=叮。。r。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条