1) edge-cochromatic number
边共色数
1.
The upper and lower bounds on the edge-cochromatic number of union of graphs are given,and the conditions that edge-cochromatic number of union of graphs can reach the bounds are shown with concrete examples.
给出了并图的边共色数的上下界,以及并图的边共色数达到下界的充要条件和达到上界的充分和必要条件。
2.
Edge-cochromatic number of K_n, K_(n,n) of a graph is proposed.
提出边共着色的概念,确定了Kn,Kn,n的边共色数,并利用这一结果给出一类强正则图共色数的上界和一类强正则图的共色数。
2) edge-cocoloring
边共染色
1.
We will introduce the concepts and the lemmas associating with the edge-cocoloringof graphs.
对图G的边集进行划分,使划分所得的每个子集是边独立集,星或三角形,则称这种边分划为G的一个边共染色,而这种分划中所含的最小子集数称图G的共色指标,用z\' (G)表示。
4) edge chromatic number
边色数
1.
The edge chromatic number and adjacent strong edge chromatic number of graph F_m W_n;
图F_m W_n的边色数和邻强边色数
2.
In this paper,the proper edge coloring and vertex coloring of S_m∨F_n are researched,and the edge chromatic number and vertex chromatic number of join-graph S_m∨F_n are obtained.
并研究了m+1阶的星Sm和n+1阶的扇Fn的联图Sm∨Fn的边染色和点染色,得到了Sm∨Fn的边色数和点色数。
3.
In this paper ,we studied edge chromatic number of Mycielskian graph.
其中,χ′(G)表示G得边色数,且证明了Δ(G)>|V(G)|2时猜想为真。
5) the edge chromatic number
边色数
1.
The main purpose of the present paper is to investigate the edge chromatic number X′(G) and the total chromatic number X_T(G) of double outerplanar graph withΔ(G)≥6.
X′(G)表示图G的边色数。
6) chromatic index
边色数
1.
The chromatic index χ′(G) of a graph G is the minimum number of colors required to color the edges of G so that two adjacent edges receive different colors.
图的边色数是指对图的边进行染色使得任意两相邻边染不同的颜色所需要的最少的色数。
2.
It was proved that the chromatic index of every planar graph with maximum degree 5 and no 4-cycles to be 5,i.
运用D ischarge方法证明了最大度为5且不含有4-圈的平面图的边色数等于5,即这样的平面图是第一类的,并给出了最大度为5的平面图分类的一个特征刻画。
3.
The two results provide feasible methods for exactly estimating the chromatic index of a multigraph.
Yap在文献[2]中给出的方法,给出了关于重图边着色的两个新结果,为较精确地估计重图的边色数提供了可行的方
补充资料:边色
1.边地的风物景色。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条