1) Jordan *-isomorphism
Jordan*-同构
1.
Meanwhile, the relation between the map Φ satisfying Φ(AA*A)=Φ(A)Φ(A)*Φ(A)(A ∈A) and Jordan *-isomorphism is also shown.
揭示了满足Φ(AA*A)=Φ(A)Φ(A*)Φ(A)(A∈A)的映射Φ与Jordan同构的关系;同时也揭示了满足Φ(AA*A)=Φ(A)Φ(A)*Φ(A)(A∈A)的映射Φ与Jordan*-同构的关系。
2) Jordan isomorphisms
Jordan同构
1.
In the final section, we give the form of surjective isometric Jordan isomorphisms on triangular Banach algebras, and prove that such isomorphisms .
第四节给出了三角Banach代数上满等距Jordan同构的一般形式,并证明了一些特殊的三角Banach代数上满等距Jordan同构的酉空间实现性。
3) Jordan isomorphism
Jordan同构
1.
Jordan-triple elementary maps and Jordan isomorphisms on triangular algebras
三角代数上的Jordan-triple初等映射及Jordan同构
2.
This paper is devoted to the study of Jordan isomorphisms on nest sub-algebras of factor von Neumann algebras.
研究了因子yon Neumann代数中套子代数上的Jordan同构,证明了套子代数algMβ和algMγ之间的每一个Jordan同构φ:要么是同构;要么是反同构。
3.
The relation between the map Φ satisfying Φ(AA*A)=Φ(A)Φ(A*)Φ(A)(A ∈A) and Jordan isomorphism is shown.
揭示了满足Φ(AA*A)=Φ(A)Φ(A*)Φ(A)(A∈A)的映射Φ与Jordan同构的关系;同时也揭示了满足Φ(AA*A)=Φ(A)Φ(A)*Φ(A)(A∈A)的映射Φ与Jordan*-同构的关系。
4) Jordan* homomorphism
实Jordan*同态
5) Jordan homomorphism
Jordan同态
1.
It is proved that if A and B are unital Banach algebras,B has CHomSP,Φ is a unit-preserving linear mapping from A into B,then the following four properties are equivalent:(a) Φ is invertibility-preserving; (b) Φ is multiplicativity-preserving; (c) Φ is inverse-preserving; (d) Φ is sqare-preserving; (e) Φ is spectrum-compressing; (f) Φ is a Jordan homomorphism.
引入了代数的复同态分离性质 ,证明如果Φ是从有单位 Banach代数 A到有单位且具有复同态分离性质的 Banach代数 B中的保单位线性映射 ,则以下等价 :1Φ是保可逆映射 ;2Φ是保乘法映射 ;3Φ是保逆运算映射 ;4Φ是保平方映射 ;5Φ是谱压缩映射 ;6Φ是 Jordan同态。
6) Jordan-homomorphisms
Jordan-同态
1.
Characterizations of the stability of generalized Jordan-derivations and Jordan-homomorphisms;
广义Jordan-导子和Jordan-同态的稳定性的刻画
补充资料:Jordan测度
Jordan测度
Jordan measure
J如加l测度[面曰明~;物p仄翻aMePa] 空间R”中的平行多面体(p鲜业kp妙刃) △={x“R”:a,蕊x‘(b‘,a,
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条