1) smooth perturbation
光滑扰动
1.
In this paper, at the first, continuity of dilatation function of Beurling-Ahlfors extension in the sence of the norm of boundary functionis is discussed, as an application,this paper discass the stability of dilatation function of Beurling-Ahlfors extension,when the smooth perturbation of boundary function occurs,and give the corresponding error estimate.
讨论了Beurling Ahlfors扩张的伸张函数依某种边界函数范数的连续性,应用所得到的结果,讨论了在边界函数发生光滑扰动时,Beurling Ahlfors扩张的伸张函数的稳定性问题,给出了相应的误差估计。
2) simple smooth perturbation curve
简单光滑扰动曲线
3) optical path disturbance
光路扰动
4) ray disturbance
光线扰动
1.
Based on ray disturbance theory,a optical modeling tool program applied in integrated simulation is developed.
针对以往光机系统集成仿真存在的诸多缺陷,从光线扰动理论出发,开发了应用于集成仿真的光学建模工具软件。
5) smooth perturbation
光滑摄动
6) Auto-Smooth
自动光滑
补充资料:不可光滑流形
不可光滑流形
non - anoothaUe manifold
不可光滑流形[助一翻阅浏恤比”.‘“d;肚~~-M“M.咐o印a3.e] 不存在光滑结构的分片线性或拓扑流形(侧妞而ld). 分片线性流形X的光滑化是分片线性同构f:M~X,其中M是光滑流形.不允许光滑化的流形称为不可光滑的(~一sITlco让叼bk)流形,作一些修改,这也适用于拓扑流形. 不可光滑流形的例子.设刚七(k>l)是一个4k维的M血lor流形(见无圈流形(血以州石c侧翅而Id),即树状流形).特别地,甲4k是可平行的,它的符号差(s妇旧姗)是8,它的边界M=刁W壮同伦等价于球面夕卜’.在刁W上,给W粘上一个锥CM得到空间尸壮,因为M是分片线性球面(见一般R如。花猜想(Poincare conj。沈切m)),CM是分片线性盘,所以P是分片线性流形.另一方面,尸是不可光滑的,因为它的符号差是8,而殆可平行的(即移动一个点后是平行的)4维流形的符号差是随着k指数增长的数几的倍数.流形M不微分同胚于球面S止一‘,那就是,M是M肠叹球面(M如orsPhe比). 分片线性流形可光滑的判别准则如下.设O。是正交群,PL。是保持原点的R”的分片线性同胚的群(见分片线性拓扑(p】。艾从理祀刁jll“刃{幻州q扮)).包含映射口。~PL。诱导了纤维化BO。~BPL二,其中BG是群G的分类空间(d睽i助ngsP暇).当n~田时,产生一个纤维化P: BO~BPL,它的纤维记作M/0.分片线性流形X有带分类映射,:X~BPL线性稳定法丛u.如果X是可光滑(或光滑)的,则它有带有分类映射称x~BO和p。不=,的稳定法丛百.这个条件也是充分的,也就是说,闭分片线性流形X是可光滑的,当且仅当它的分片线性稳定法丛允许向量简化,换言之,如果映射v:X~BPL可以“升腾,到BO上(存在认叉~BO使p。下二,). 两个光滑化f:M~X和g:N~X称为等价的,如果存在微分同胚h:M~N,使得h广’是分片可微地同痕于‘’(见流形上的结构(stn以t此)),光滑化的等价类的集合招(X)是在附有v:X~BPL的升腾称X~B口的纤维方式的同伦类的自然一一对应之中,换言之,当X可光滑时,ts(X)=「X,PL/O].
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条