说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 半无爪图
1)  quasi-claw-free graphs
半无爪图
1.
We show some results for vertex pancyclism in quasi-claw-free graphs.
若对图G中任意一对距离为2的点x,y,存在u∈N(x)∩N(y),使得N|u|N|x|∪N|y|,则称G为半无爪图
2.
A sufficient condition for quasi-claw-free graphs to be pancyclic;
本文证明了如果G是2-连通半无爪图,G不是圈,|V(G)|≥9,G的每个导出子图B满足φ(u,v)且G中不含同构于Z′的导出子图,则G是泛圈图。
2)  quasi-claw-free graph
半无爪图
1.
In this paper, the author proves that every triangularly connected quasi-claw-free graph with at least three edges and without any isolated vertex is vertex pancyclic.
证明了无孤立点的边数不小于3的三角连通的半无爪图是点泛圈的。
3)  strong quasi claw-free graphs
强半无爪图
4)  claw-free graph
无爪图
1.
Hamiltonicity,neighborhood union and square graphs of claw-free graphs;
哈密尔顿性、邻域并和无爪图的平方图(英文)
2.
A note charaterization of the claw-free graphs;
关于无爪图特征的一个注记
3.
An implicit degree condition for Hamiltonian cycles in k-connected claw-free graphs;
k-连通无爪图中存在哈密尔顿圈的一个隐度条件
5)  claw-free graphs
无爪图
1.
The edge-number of maximum spanning eulerian subgraphs of claw-free graphs;
无爪图的极大欧拉生成子图边数问题
2.
Circumference in three-connected claw-free graphs;
3-连通无爪图的最长圈
3.
Hamilton problem of 2-connected claw-free graphs;
2-连通无爪图的Hamilton性
6)  claw free graph
无爪图
1.
In this paper, we will use the technique of the vertex insertion on l connected ( l=k or k+1,k≥2 ) claw free graphs to provide a unified proof for G to be hamiltonian or 1 hamiltonian, the sufficient conditions are expressed by the inequality concerning ∑ki=0N(Y i) and n(Y) for eac.
本文利用插点方法 ,给出了关于k或 (k + 1)连通 (k≥ 2 )无爪图G是哈密尔顿的或 1哈密尔顿的统一的证明 。
2.
It is supposed that P[u,v] is the longest path of a 2 connected claw free graph G,d P(x β,x α)=︱P[x β,x α]︱-1,(x β<x α),d * P(x α,x β)=︱P[x α,x β]︱-1(x α<x β ).
若P[u ,v]是 2连通无爪图G的最长路 ,设dp(xβ,xα) =︱P[xβ,xα]︱ -1 (xβ
3.
It was proved that if G is a 3 connected claw free graph on n vertices with the minimum degree δ =min{d( x )| x ∈ V(G )}and δ *=min{max(d( x ),d( y ))| x,y∈V(G) ,d( x,y )=3},then the circumference of the graph G is at least min{ n,3δ *+δ,6δ }.
设 G 为n 阶3连通无爪图,δ= min{d( x)| x ∈ V( G)} ,δ= min{ max(d( x) ,d( y))| x ,y∈ V( G) ,d( x ,y) = 3} ,则 C( G) ≥min{ n ,3 δ+ δ,6 δ}·用反证法,若图 G 的最长圈不满足结论,利用 G 的3连通性和无爪性构造矛盾
补充资料:片鳞半爪
1.喻事物的极小部分。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条