1) essential bounded subset
本性有界集
1.
In this paper,We show that 1~∞(X)-evaluation uniform convergence of operator series can be described completely by the essential bounded subset of 1~∞(X),this conclusion improves the J.
将证明算子级数的1~∞(X)-赋值收敛能完全用1~∞(X)-的本性有界集来刻画,此结论推广了J。
2) essentially bounded
本性有界
1.
we obtained the following results:1 With the concept of uniformly forward subsets of the spaces c(X),essentially bounded subsets of the spaces l∞(X) and uniformly exhaustive subsets of the spaces l~p(X) and the description of operator series family of l_p~β(X),we get a equipollence proposition about uniformly forward,essentially bounded and uniformly exhaustive subsets.
得到了如下结论: 1、利用c(X)空间子集是一致趋向的概念、l~p(X)(1<p<∞)-空间子集是一致耗散的概念以及l~∞(X)-空间子集是本性有界的概念,再利用算子序列族l_p~β(X)的刻化,分别得到与子集一致趋向、一致耗散和本性有界等价的命题。
3) boundedness of the solution set
解集的有界性
1.
The nonemptyness and boundedness of the solution set for the second-order cone complementarity problem with a Cartesian P_*(κ) mapping are investigated.
文中讨论涉及这类映射的二阶锥互补问题的解的存在性和解集的有界性。
4) bounded set
有界集
1.
In general,the convergent sequence and bounded set are concepts only in topological spaces.
收敛序列和有界集一般是拓扑空间中的概念 ,文章首先引入序列收敛 C和 L* -空间 (给出某种序列收敛关系的向量空间 ) ,然后在其中定义有界集 。
2.
Moreover,for the space X satisfying a condition (Q),each bounded set in C 0(X) admits a center if X is quasi-uniformly convexity.
证明了C0 (X)中的每个紧子集均有中心充要条件是X中每个紧子集均有中心 ,而且 ,若X满足条件 (Q) ,则C0 (X)中的每个有界集有中心充要条件是X是拟一致凸的 。
3.
Introducing the difinition of bounded set in fuzzy paranormed linear space , this paper discusses several concerned characteristics and studies the local boundedness of fuzzy paranormed linear space.
引进Fuzzy赋准范线性空间中的有界集概念,并讨论了有关性质,研究了Fuzzy赋准范线性空间的局部有界性。
5) family of bounded sets
有界集族
1.
We produce a family of bounded sets Δ u .
在一类局部凸空间 X上构造了有界集族 Δu,讨论了 Δu中有界集的若干性质以及 Δu与数列空间 S的关系 ;由此推广了 И。
6) quasi-bounded set
拟有界集
1.
In quasi-normed space, the limit of normed γ-quasi-subadditive operator sequence or normed γ-max-quasi-subadditive operator sequence being equi-continunous operator sequence in quasi-normed space is bounded in any quasi-bounded set, and its normed γ-quasi-subadditivity or normed γ-max-quasi-subadditivity is invariable.
证明了在赋准范空间上等度连续的按范γ-拟次加算子列的极限,和等度连续的按范γ-最大拟次加算子列的极限,在任何拟有界集上是数值有界的,及其按范γ-拟次加性和按范γ-最大拟次的不变性。
补充资料:界牌集战斗
新四军在淮南界牌集反击国民党顽固派军队进攻的自卫战斗。1940年11月11日,新四军江北游击纵队在安徽省滁县(今滁州市)界牌集地区,对国民党第21集团军第178师两个团及第8游击纵队一部进行自卫还击,毙伤其390余人,俘5人。新四军伤亡97人。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条