1) Г-Equivariant
Г-等变
2) г-ring
г-环
1.
The primitive subdirectly irreducible г-rings are studied.
研究本原亚直不可约г-环,证明本原亚直不可约г-环类是特殊类,此类决定的上根称为反单本原根,建立了г-环M、M的右算子环R及矩阵гmn-环Mmn的反单本原根之间的关系。
2.
in this paper,the notions of nilpotent radical and quasi-nilpotent radical of Prings are introducted,some conditions of nilpotent radical exist are represented and quasinilpotent radical is Amitsur-Kurosh radical is proved.
定义了г-环的幂零根和拟幂零根,给出幂零根存在的若干条件,证明拟幂零根是Amit-sur-Kurosh根,给出它的半单г-环的构造命题和г-模刻划。
3.
Some characterizations of T-niloptence and essentiai nilpotence for Г-fing in terms of ralated rings are given.
利用相关环对Г-环的T-幂零性进行了刻画;利用相关环对Г-环的本质幂零性给出了刻画,而且建立了它们的最大本质幂零理想之间的关系。
3) Г-kernel
Г-核
1.
Г-Semigroups with a Completely Simple Г-kernel;
具有完全单Г-核的Г-半群
4) г-module
г-模
1.
Moreover,the structure theorenl ofsemisimple г- rings and г-module characterization for quasi-nilpotent radical are obtained.
定义了г-环的幂零根和拟幂零根,给出幂零根存在的若干条件,证明拟幂零根是Amit-sur-Kurosh根,给出它的半单г-环的构造命题和г-模刻划。
5) equivariant
['i:kwəværiənt]
等变
1.
The equivariant minimal immersion from the Euclidean sphere s3=SU(2) with constant curvature c into the complex projective space sp3 is studied.
研究常曲率的3维球面S3=SU(2)到复射影空间CP3中的等变极小浸入,证明了这种浸入不存在介于CR和Lagrangian之间的浸入,只能是Lagrangian浸入,从而是全测地的。
2.
In the present paper the equivariant minimal immersion from the Euclideansphere S~3=SU(2) with constant curvature c into the complex projective spaceCP~3 is studied.
本文研究常曲率的3维球面S~3=SU(2)到复射影空间CP~3中的等变极小浸入,证明了这种浸入必是Lagrangian浸入,从而是全测地的。
3.
In this paper, the equivariant weakly Lagrangian minimal S~3 in CP~4 are completely classified and the analytic expressions of the corresponding immersion φ : S~3→ CP~4 are given.
本文研究S~3=SU(2)到复射影空间CP~4中的等变弱Lagrangian极小浸入,给出它的完全分类和解析表达式。
6) Г model
Г模型
1.
Application of Г model in prediction of super heavy oil production;
Г模型在超稠油产量预测中的应用
补充资料:长等短等
1.犹言左等右等。谓等待久。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条