说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> Г函数
1)  г function
Г函数
1.
This paper uses some special treating methods of infinite series, analyses deeply the characters of some special functions about г function, reveals some profound regularities of the changes about the extreme value of F distribution density function when parameters change.
该文运用对无穷级数的一些特殊处理方法,深入分析了与г函数有关的一些特殊函数 的性质,揭示了参数变化时F分布密度函数极值变化的一些深刻规律。
2)  gamma-function
Г-函数
1.
By applying gamma-function and beta-function,a Hardy-Hilbert\'s inequality of multiple integral type is given,the problem of the best constant factor in some particular conditions is discussed.
利用Г-函数和B-函数,建立了一种重积分型Hardy-Hilbert不等式,并证明在一定条件下其常数因子是最佳的。
3)  Γ-distribution function
г分布函数
4)  incomplete Γ function
不完全Г函数
1.
In this paper, P-Ⅲ distribution curve has been transformed into incomplete Γ function and the model of P-Ⅲ distribution curve is got by transformation of the mathematical expre.
为此 ,通过数学表达式的变换 ,将皮尔逊 -Ⅲ型分布转换为不完全Г函数 ,并给出其快速通用的算法模型。
5)  About the Set Function Г
关于Г-集函数
6)  Г distribution
Г型分布函数
补充资料:高斯函数模拟斯莱特函数
      尽管斯莱特函数作为基函数在原子和分子的自洽场(SCF)计算中表现良好,但在较大分子的SCF计算中,多中心双电子积分计算极为复杂和耗时。使用高斯函数(GTO)则可使计算大大简化,但高斯函数远不如斯莱特函数(STO)更接近原子轨道的真实图象。为了兼具两者之优点,避两者之短,考虑到高斯函数是完备函数集合,可将STO向GTO展开:
  
  
  式中X(ζS,A,nS,l,m)定义为在核A上,轨道指数为ζS,量子数为nS、l、m 的STO;g是GTO:
  
  
  其变量与STO有相似的定义;Ngi是归一化常数:
  
  
  rA是空间点相对于核A的距离;ci是组合系数;K是用以模拟STO的GTO个数(理论上,K→∞,但实践证明K只要取几个,便有很好的精确度)。
  
  ci和ζ在固定K值下, 通过对原子或分子的 SCF能量计算加以优化。先优化出 ζS=1 时固定K值的ci和(i=1,2,...,K),然后利用标度关系式便可得出ζS的STO展开式中每一个GTO的轨道指数,而且,ci不依赖于ζS,因而ζS=1时的展开系数就是具有任意ζS的STO的展开系数。对不同展开长度下的展开系数和 GTO轨道指数已有表可查。
  

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条