1) lower integral sum graph
下整和图
1.
A graph G is said to be an lower integral sum graph if it is isomorphic to the lower integral sum graph of some SQ+.
一个图G称为下整和图,若它同构于某个S Q+的下整和图。
2.
In this paper the definitions of lower integral sum graph and the lower integral sum number of a graph are introduced,some properties of lower integral sum graphs are given,and it is proved that the lower integral sum number of complete tripartite graph K_ m,n,q (m,n,q≥2) is 2.
定义了下整和图与图的下整和数,给出下整和图的结构性质,并证明完全三部图Km,n,q(m,n,q≥2)的下整和数为2。
2) (Exclusive,lower integral,integral)sum graph
(排斥,下整,整)和图
3) All Ladders are the Lower Integral Sum Graph
梯子是下整和图
4) (Exclusive)lower integral sum graph
(排斥)下整和图
5) exclusive (lower integral) sum graph
排斥(下整)和图
6) graphs/integral sum graph
图/整和图
补充资料:图的减缩图(或称图子式)
图的减缩图(或称图子式)
minor of a graph
图的减缩图(或称图子式)【.皿以ofa脚户;MHHoPrpa中a」【补注】设G是一个图(graph)(可以有环及多重边).G的一个减缩图(nullor)是从G中接连进行下述运算而得的任何一个图: i)删去一条边; 五)收缩一条边; 说)去掉一个孤立顶点. NRobe由on与P.D.Se脚aour的图减缩定理(脚Ph nl的。r theon习11)如下所述:已知有限图的无穷序列G,,GZ,…,则存在指标i
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条