1) The Sum Graph and the Integral Sum Graph
和图与整和图
2) graphs/integral sum graph
图/整和图
3) integral sum graph
整和图
1.
This paper gives upper palm leaf of sum number of palm leaf fanT_n and proves that bajiao fanT_n is integral sum graph and mod integral sum graph.
给出了芭蕉扇Tn和数的上界,并证明了芭蕉扇Tn是整和图,模整和图。
2.
This paper mainly proves the following results: 1) let G be a graph of order n, if δ(G)≥(n+3)/2,then G is not integral sum graph.
证明了 :(1)对任意n阶图G ,若δ(G)≥ (n +3) 2 ,则G不是整和图 。
4) mod integral sum graph
模整和图
1.
This paper gives upper palm leaf of sum number of palm leaf fanT_n and proves that bajiao fanT_n is integral sum graph and mod integral sum graph.
给出了芭蕉扇Tn和数的上界,并证明了芭蕉扇Tn是整和图,模整和图。
2.
This paper proves that the windmill W_n~* is the integral sum graph and mod integral sum graph.
证明了风车Wn*(n≥2)是整和图,模整和图。
5) lower integral sum graph
下整和图
1.
A graph G is said to be an lower integral sum graph if it is isomorphic to the lower integral sum graph of some SQ+.
一个图G称为下整和图,若它同构于某个S Q+的下整和图。
2.
In this paper the definitions of lower integral sum graph and the lower integral sum number of a graph are introduced,some properties of lower integral sum graphs are given,and it is proved that the lower integral sum number of complete tripartite graph K_ m,n,q (m,n,q≥2) is 2.
定义了下整和图与图的下整和数,给出下整和图的结构性质,并证明完全三部图Km,n,q(m,n,q≥2)的下整和数为2。
6) (integral) sum graph
(整)和图
补充资料:《宣和博古图》
《宣和博古图》 中国宋代金石学著作。简称《博古图》。旧题为王黼等奉敕编纂,一说王楚纂。共30卷。大观(1107~1110)年间开始编纂,成书于宣和(1119~1125)年间。该书著录了宋代皇室在宣和殿收藏的自商代至唐代的青铜器839件 。全书共分20大类,各种器物均按时代编排。该书集中了宋代所藏青铜器的精华,包括一些著名的重器。每类器物都有总说,每件器物都有摹绘图、铭文拓本及释文,并记有器物尺寸、重量与容量。有些还附记出土地点、颜色和收藏家的姓名,对器名、铭文也有详尽的说明与精审的考证。但内容有失误,铭文考证疏陋较多。
|
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条