1) Generalized saddle point
广义鞍点
1.
Super efficient point in vector optimization problems with set-valued maps characterized by generalized saddle point;
集值向量优化问题超有效点的广义鞍点刻画
2.
By using the properties of generalized saddle points and a separation theorem,a property of generalized saddle points is proved with set separation.
本文研究集值优化问题严有效解的广义鞍点刻画问题。
2) generalized weak saddle point
广义弱鞍点
1.
This paper establishes one kind of constructions for vector Lagrangian functionals in a class of multiobjective fractional optimal control problems, called generalized Lagrangian functionals, and the relationship between the weak efficiency and generalized weak saddle points of such a kind of generalized Lagrangian functionals is discussed.
给出一类多目标分式最优控制问题的向量 Lagrange泛函的构造 ,称为广义 Lagrange泛函 ,并且讨论弱有效性和这样一种广义 Lagrange泛函的广义弱鞍点之间的关
3) the generalized saddle point theorem
广义鞍点定理
1.
Some multiplicity theorem are obtained for periodic solutions of a class of nonautonomous second order systems by using the generalized saddle point theorem.
利用广义鞍点定理讨论了一类非自治二阶系统的多重周期
4) generalized saddle point problem
广义鞍点问题
1.
In this paper,we extend the ST decomposition to the generalized saddle point problem and present three block triangular preconditioners.
本文进一步讨论ST分解,并把这种分解推广到广义鞍点问题上。
5) generalized vector Fritz-John saddle point
广义向量Fritz-John鞍点
1.
In ordered linear spaces,generalized vector Fritz-John saddle point and generalized vector Kuhn-Tucker saddle point of set-valued optimization problems with generalized inequality constraints were defined,and the relations between them were established.
在序线性空间中定义了带广义不等式约束集值优化问题的广义向量Fritz-John鞍点和广义向量Kuhn-Tucker鞍点,建立了二者之间关系。
6) generalized vector Kuhn-Tucker saddle point
广义向量Kuhn-Tucker鞍点
1.
In ordered linear spaces,generalized vector Fritz-John saddle point and generalized vector Kuhn-Tucker saddle point of set-valued optimization problems with generalized inequality constraints were defined,and the relations between them were established.
在序线性空间中定义了带广义不等式约束集值优化问题的广义向量Fritz-John鞍点和广义向量Kuhn-Tucker鞍点,建立了二者之间关系。
补充资料:鞍点
分子式:
CAS号:
性质:数学上同时具备极大与极小性质的点。应用于三维势能面及裂变核势能曲面上,与反应坐标相垂直的方向上过渡态位于势能的最低点,发生对称伸缩振动。在沿反应坐标方向上过渡态位于势能的最高点,发生不对称伸缩振动。过渡态在势能面所处的这一点即势能面的鞍点。
CAS号:
性质:数学上同时具备极大与极小性质的点。应用于三维势能面及裂变核势能曲面上,与反应坐标相垂直的方向上过渡态位于势能的最低点,发生对称伸缩振动。在沿反应坐标方向上过渡态位于势能的最高点,发生不对称伸缩振动。过渡态在势能面所处的这一点即势能面的鞍点。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条