1) singular transport operator
奇异迁移方程
1.
It proves the singular transport operator generates a strongly continuous C_0 semigroup V(t)(t0)and the weak compactness properties of the second-order remained term of the Dyson-Phillips expansion for the C_0 semigroup V(t)(t0)in L1 space,and to obtain the spectrum of the singular transport operator only consist of,at.
在L1空间上研究了板几何中一类具完全反射边界条件下各向异性、连续能量、均匀介质的奇异迁移方程。
2.
It proves the singular transport operator generates a strongly continuous C0 semigroup V(t)(t≥0) and the compactness properties of the second-order remained term of the Dyson-Phillips expansion for the C0 semigroup V(t)(t≥0) in Lp space, and to obtain the spectrum of the transport operator consist of isolate eigenvalues which have a finite algebraic multiplicity in trip Γ.
在Lp(1
奇异迁移方程。
2) Transport equation
迁移方程
1.
The multi-velocity neutron transport equation with a slab geometry in spaces of measures;
测度空间上平板几何多速中子迁移方程
2.
The Research for Constructive Theory and Application of the Transport Equations Solution;
迁移方程解的构造性理论及应用研究
3.
We derive the diffusion approximate equation for the transport equation, to show the discrete-ordinate method has the correct diffusion limit, both in the interior and at the boundaries, its solutions converge to the solution of the transport equation uniformly in ε.
导出了迁移方程的扩散近似方程,说明了它的离散纵标方法在区间内和边界上都有扩散极限,它的解关于一致地收敛于迁移方程的解。
3) Transport operator
迁移方程
1.
The objective of this paper is to research spectral analysis of transport operator with anisotropic continuous energy nonhomogeneous slab geometry in reflecting boundary condition.
在Lp(1 p<∞)空间上研究了板几何中具反射边界条件下各向异性、连续能量、非均匀介质的迁移方程,证明了该迁移算子产生C0半群的Dyson-Phillips展开式的二阶余项在Lp(1
4) singular equation
奇异方程
1.
In this paper,we study mainly positive periodic solution to singular equations.
在这篇文章中,我们主要研究奇异方程的正周期解问题。
2.
The present paper deals with the existence of positive solutions of the singular equation (|u′| p-2 u′)′+f(t,u)=0 satisfying the nonlinear boundary value conditions h(u (o) u′ o(0))=0,u(1)=0 by means of the technique of upper and lower soluitons .
本文利用上、下解技巧讨论了奇异方程(|u′|p-2u′)′+f(t,u)=0满足非线性边值条件h(u(o),u′(o)=0u(1)=0的正解存在
5) system of transfer equations
迁移方程组
6) weakly singular integro-differential equation
弱奇异方程
补充资料:奇异积分方程
通常是指带有柯西核的奇异积分方程,它的一般形式是
(1)这里 L是复平面上的逐段光滑曲线,φ(t)是未知函数,α(t)、b(t)、??(t)、K(t,τ)都是给定的函数,K(t,τ)最多只具有弱奇异性,方程(1)左端第二项的积分是在柯西主值意义下存在。解析函数论边值问题、潮汐理论、正曲率曲面的无穷小变形以及弹性理论、流体力学等问题都可以归结为奇异积分方程(1)。20世纪初期(J.-)H.庞加莱、D.希尔伯特以及后来的F.诺特、Η.И.穆斯赫利什维利等人都对奇异积分方程理论作出了重要贡献。
研究柯西型积分
(2)的边界性质(一般是在连续函数空间或平方可和函数空间来讨论)是解决方程(1)的关键。方程(1)的特征方程是
(3)
借助于所谓希尔伯特边值问题的标准解,方程(3)的解可以通过积分表成明显形式,这对于研究方程(1)的一般理论起着很重要的作用。为了讲清楚问题还必须引入指标的概念。把整数叫做算子(或者方程Kφ=??)的指标,这里[ ]L表示当t沿正方向绕L一周时,括号内的函数所获得的增量。
区别指标的不同情况,有以下结论。①如果k>0,那么齐次方程k0φ=0刚好有k个线性无关解。②如果k≤0,那么齐次方程k0φ=0没有非零解。③如果k≥0,那么非齐次方程k0φ=??对右端任意??都是可解的。④如果k<0,那么非齐次方程k0φ=??可解的充分必要条件是它的右端??满足-k个条件:, 这里ψk是给定的线性无关函数,当这些条件满足时,方程0φ=??有而且只有一个解。
研究一般奇异积分方程 (1)的重要方法之一是把它正则化(这时,奇异积分的换序公式将起重要作用),所谓正则化就是把它归结为一个在一定意义下与之等价的弗雷德霍姆积分方程。于是,类似于弗雷德霍姆备择定理,对于方程(1)可以证明以下定理(通常统称为诺特定理):
定理Ⅰ 方程(1)可解的充分必要条件是满足关系式
,
(4)式中ψj(t)是相联方程的线性无关解的完备系。
定理Ⅱ 齐次方程φ=0之线性无关解的个数k与相联齐次方程┡ψ=0之线性无关解的个数k┡之差刚好等于算子的指标k,即k-k┡=k。
在奇异积分方程(1)中代替柯西核还可以考虑希尔伯特核,这两种核可以通过欧拉公式进行转化。于是关于柯西核积分方程的理论结果,在一定条件下可以相应地转移到带有希尔伯特核的奇异积分方程上去。另外,积分主值意义,除了柯西主值以外,还可以考虑阿达马主值。从而还可以讨论具有高阶奇异性的积分方程理论。
奇异积分方程的许多理论结果可以推广到奇异积分方程组上去,这只需要把方程(1)中的α(t)、b)(t)、K(t,τ)理解为函数矩阵,而??(t),φ(t)理解为函数向量。
多维区域上某些类型的奇异积分方程以及非线性奇异积分方程理论近年来也都得到了相应的发展。
(1)这里 L是复平面上的逐段光滑曲线,φ(t)是未知函数,α(t)、b(t)、??(t)、K(t,τ)都是给定的函数,K(t,τ)最多只具有弱奇异性,方程(1)左端第二项的积分是在柯西主值意义下存在。解析函数论边值问题、潮汐理论、正曲率曲面的无穷小变形以及弹性理论、流体力学等问题都可以归结为奇异积分方程(1)。20世纪初期(J.-)H.庞加莱、D.希尔伯特以及后来的F.诺特、Η.И.穆斯赫利什维利等人都对奇异积分方程理论作出了重要贡献。
研究柯西型积分
(2)的边界性质(一般是在连续函数空间或平方可和函数空间来讨论)是解决方程(1)的关键。方程(1)的特征方程是
(3)
借助于所谓希尔伯特边值问题的标准解,方程(3)的解可以通过积分表成明显形式,这对于研究方程(1)的一般理论起着很重要的作用。为了讲清楚问题还必须引入指标的概念。把整数叫做算子(或者方程Kφ=??)的指标,这里[ ]L表示当t沿正方向绕L一周时,括号内的函数所获得的增量。
区别指标的不同情况,有以下结论。①如果k>0,那么齐次方程k0φ=0刚好有k个线性无关解。②如果k≤0,那么齐次方程k0φ=0没有非零解。③如果k≥0,那么非齐次方程k0φ=??对右端任意??都是可解的。④如果k<0,那么非齐次方程k0φ=??可解的充分必要条件是它的右端??满足-k个条件:, 这里ψk是给定的线性无关函数,当这些条件满足时,方程0φ=??有而且只有一个解。
研究一般奇异积分方程 (1)的重要方法之一是把它正则化(这时,奇异积分的换序公式将起重要作用),所谓正则化就是把它归结为一个在一定意义下与之等价的弗雷德霍姆积分方程。于是,类似于弗雷德霍姆备择定理,对于方程(1)可以证明以下定理(通常统称为诺特定理):
定理Ⅰ 方程(1)可解的充分必要条件是满足关系式
,
(4)式中ψj(t)是相联方程的线性无关解的完备系。
定理Ⅱ 齐次方程φ=0之线性无关解的个数k与相联齐次方程┡ψ=0之线性无关解的个数k┡之差刚好等于算子的指标k,即k-k┡=k。
在奇异积分方程(1)中代替柯西核还可以考虑希尔伯特核,这两种核可以通过欧拉公式进行转化。于是关于柯西核积分方程的理论结果,在一定条件下可以相应地转移到带有希尔伯特核的奇异积分方程上去。另外,积分主值意义,除了柯西主值以外,还可以考虑阿达马主值。从而还可以讨论具有高阶奇异性的积分方程理论。
奇异积分方程的许多理论结果可以推广到奇异积分方程组上去,这只需要把方程(1)中的α(t)、b)(t)、K(t,τ)理解为函数矩阵,而??(t),φ(t)理解为函数向量。
多维区域上某些类型的奇异积分方程以及非线性奇异积分方程理论近年来也都得到了相应的发展。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条