1) vector-valued sequence spaces lp(X)
矢量值序列空间l_p(X)
2) Cesaro vector-valued sequence spaces
Cesaro矢值序列空间
1.
In this paper, we characterize extreme points and locally and unformly rotund points of Cesaro vector-valued sequence spaces and give their criteria.
刻划了Cesaro矢值序列空间的端点和局部一致凸点,给出了它们的判据。
2.
In this paper, we discuss property (M) and uniform λ-property of Cesaro vector-valued sequence spaces ces p(E k), and give their criteria.
本文讨论了Cesaro矢值序列空间cesp(Ek)的 (M)性质 ,给出了它们的判
3) vector-valued sequence space
矢值序列空间
1.
Vector-valued Sequence Space∧[X] and Its Kothe Dual (Ⅲ)-GAK-property and Convergence of Sequences;
矢值序列空间∧[X]及其Kothe对偶(Ⅲ)-GAK-性质及序列收敛
2.
This paper shows that a set in foe vector-valued sequence space BMC(X) is a relatively sequentially compact set if and only if it is an uniformly convergent set and its each coordinate project set is relatively sequentially compact, and shows another characterization of relatively sequentially compact sets in BMC(X) in case the locally convex space X does not contain a copy of c
利用局部凸空间理论,讨论了矢值序列空间BMC(X)中的相对序列紧集的性质,给出了其特征刻划,即BMC(X)中的子集是相对序列紧集,当且仅当它是一致收敛集及其每个坐标射影集是相对序列紧集。
5) The method of the vector-value sequence space
矢值序列空间方法
6) Cesaro sequence spaces cesp(E)
Cesaro矢值序列空间cesp(E)
补充资料:序列空间
序列空间
sequential space
序列空间〔哟叩.如1即ace;“畔职“幼~enpoc印明-c,01 一拓扑空间(top0fogi(元sPace)X,使得若A Cx且A护工AI(即集合A是非闭的),则存在A的点序列x*(k二1,2,…)收敛于【A〕\A的点·若x〔【Al C=X总蕴含:存在A的点的序列戈*收敛于x,则x称为Fr良het一y孙I以班空间(Fr白比t一U郎。恤sPaCe).M .H .B璐加exoc盆浦撰【补注】序列空间构成所有拓扑空间的范畴的余自反子范畴(见自反子范畴(化趾成ive su肠把即即);余自反射是把具有拓扑结构的任意空间用下列方式再拓扑化而得到的:一个子集是闭集的充要条件是,它在序列的极限(按通常的拓扑)下是闭的.满足第一可数公理(腼t~mofcoUntab习ity)的空间总是序列空间(实际上,是F苗出et.yPblc佣空间),而序列空间构成包含所有第一可数空间的最小余自反子范畴.因此,以往对第一可数空间证明的许多拓扑结论,都可以很容易地推广到序列空间.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条