1) λ-fuzzy Choquet integral
λ-模糊Choquet积分
1.
Convergence of λ-fuzzy Choquet integral;
λ-模糊Choquet积分的收敛性
2) choquet fuzzy integral
Choquet模糊积分
1.
After introducing the concept of fuzzy measures and Choquet fuzzy integral, information fusion for target recognition can turn into generalized Lebesgue integral of recognition result with respect to the degree of importance of source.
引入模糊测度和 Choquet模糊积分的概念后,信息融合目标识别可转化为各信源识别结果关于信源重要程度的广义 Lebesgue积分。
2.
In this paper,a new Fisher discriminant analysis based on Choquet fuzzy integral is introduced.
文中引进一种新的非线性判别分析—基于Choquet模糊积分的Fisher判别分析,该基于Choquet模糊积分的Fisher判别分析方法可充分考虑到输入的各指标之间的交互作用,当模糊测度μ具有可加性时,基于Choquet模糊积分的Fisher判别分析方法就是经典的Fisher判别分析。
3.
By using Choquet fuzzy integral,the MOD and SOD models are established based on interaction of attribute,from which the attribute weights can be derived.
利用Choquet模糊积分作为集结算子,构建了基于属性关联的M OD和SOD模型。
3) fuzzy Choquet integrals
模糊Choquet积分
4) generalized choquet fuzzy integral
广义Choquet模糊积分
5) fuzzy valued Choquet integrals
模糊数值Choquet积分
6) set-valued fuzzy Choquet integrals
集值模糊Choquet积分
1.
On the basis of the definition of set-valued fuzzy Choquet integrals, aiming at the general measurable set-valued mapping, some important properties with respect to this kind of set-valued fuzzy Choquet integrals further were studied , which will extend the applications of this kind of integral theory.
在集值模糊Choquet积分定义的基础上,针对一般可测集值映射,进一步研究这种集值模糊Choquet积分的一些重要性质,从而使这种积分的理论具有更广泛的应用。
补充资料:spectral radiant intensity(Iλ)
分子式:
CAS号:
性质:波长为λ时,单位波长范围内的辐照强度(I)。其SI制单位为W/(m·s),常用单位为W/(nm·s)。
CAS号:
性质:波长为λ时,单位波长范围内的辐照强度(I)。其SI制单位为W/(m·s),常用单位为W/(nm·s)。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条