说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 强(弱)对偶
1)  Weak(strong) duality
强(弱)对偶
2)  less(much) dual
弱(强)对偶
3)  weak duality and strong duality
弱对偶与强对偶
4)  Weak duality
弱对偶
1.
Using Non-fuzzy multiobjectice programming, we introduce one Mond-Weir type of dual model, and prove the corresponding theorems of Weak duality, direct duality and deverse duality.
本文研究具有Fuzzy约束的非光滑Fuzzy多目标规划 (FVP) ,利用分明多目标规划建立了 (FVP)的Mond-Weir型对偶模型 ,得到了Fuzzy有效解的弱对偶、直接对偶和逆对偶定理。
2.
The weak duality and the strong one are obtained under the(F,α,ρ,d)-convexity.
在(F,α,ρd)-凸的基础上讨论了Wolfe向量对偶,并获得了弱对偶和强对偶定理。
3.
The duality theory is the basic theory for mathematical planning in which the study of weak duality theorem under different controlling conditions is an important part of duality theorem research.
对偶理论是数学规划的理论基础,其中在各种约束条件下对弱对偶定理的研究是对偶理论研究的重要组成部分。
5)  weakly dual basis
弱对偶基
6)  weak duality
弱对偶性
1.
The paper sets up a new dual problem of a nondifferentiable convex programming problem and proves its dual properties such as weak duality, strong duality and converse duality.
本文对非可微凸规划问题建立了一个新的对偶问题 ,并证明其对偶性质 ,如弱对偶性 ,强对偶性及逆对偶性。
2.
In this paper,we set up a new dual problem for nondifferentiable convex programming which is different from well known dual problems and prove the weak duality and the strong duality.
文章建立关于非可微凸规划的一个新的对偶问题,它不同于已知的对偶问题,文中证明了弱对偶性及强对偶性。
3.
This paper sets up a dual problem for nondifferentiable convex programming with equality constraints and proves the weak duality and strong duality.
本文建立带有等式约束的非可微凸规划的新的对偶问题,证明了其弱对偶性及强对偶性,并讨论了强对偶性与 Lagrange 因子的关系。
补充资料:强电解质和弱电解质
      电解质一般可分为强电解质和弱电解质,两者的导电能力差别很大。可以认为强电解质在溶液中全部以离子的形态存在,即不存在电解质的"分子"(至少在稀溶液范围内属于这类情况)。由于浓度增加时,离子间的静电作用力增加,使离子淌度下降,当量电导也随着下降。对于弱电解质来说,它在溶液中的主要存在形态是分子,它的电离度很小,所以离子数目极少,静电作用也很小,可以认为离子淌度基本上不随浓度而变,因此当量电导随浓度增加而迅速下降的原因主要是电离度的很快下降。
  
  以上分类只是指两种极端的情况,实际体系并不这样简单,例如大部分较浓的强电解质溶液的正、负离子将因静电作用而发生缔合,使有效的离子数减少,促使当量电导下降。
  
  事实上,1887年S.A.阿伦尼乌斯发表的电离理论是按照上述弱电解质的模型提出的,他认为电解质在无限稀释的条件下是 100%电离的。设此时的当量电导为Λ0,则任何浓度下的电离度α 都可以根据该浓度下测得的当量电导Λ来计算:
  
  
  从而求出该电解质在溶液中的电离常数 K。电离理论应用于乙酸、氨水等弱电解质时取得很大的成功,但在用于强电解质时遇到了困难。直到20世纪20年代,P.德拜和L.昂萨格等发展了强电解质稀溶液的静电理论,才对电解质溶液的本质有了较全面的认识。
  
  根据上述强电解质溶液的模型和物质当量的定义,以及溶液的总电导率是正、负离子各自电导率的和这一性质(见离子淌度),可得:
  Ceq=C+|Z+|=C-|Z-|
  Λ=(U++U-)F式中Z+和Z-为正、负离子的价数;C+和C-是正、负离子的浓度;Ceq为当量浓度;U+和U-是正、负离子的离子淌度;F为法拉第常数。如果Λ+和Λ-分别代表 1当量正离子和1当量负离子的导电能力,则Λ=Λ+-+=U+F,Λ-=U-F。
  
  1926~1928年,昂萨格认为溶液浓度增加时,离子间距离缩短,静电作用增强,他应用静电理论得到在极稀浓度范围内强电解质溶液的电导公式:
  
  
  式中A为常数,图中也说明了溶液的当量电导与当量浓度的平方根呈线性关系。这一点与F.W.G.科尔劳施的精确电导测量结果完全符合,甚至昂萨格的电导公式中的常数 A也与实验测得的斜率相同,说明在极稀溶液范围内(对盐酸和氯化钾等对称的一价离子电解质来说,在<0.01N 范围内适用),上述强电解质模型是反映实际的。上式中的Λ0是外推法得到的C→0时的当量电导,相当于无限稀释时的当量电导。此时离子间的距离足够远,可以认为各种离子是独立移动的,静电力不起作用。
  
  
  
  如果把Λ+=U+F和Λ-=U-F改写成Λ+,0=U+,0F和Λ-,0=U-,0F,式中附加在Λ+和Λ-中的下标0表示它们是在无限稀释条件下的当量电导,于是,不管电解质中对应的离子是什么,U+,0和U-,0都应有独自的固定的数值。这就是科尔劳施根据实验提出的无限稀释条件下离子独立移动定律。
  

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条