说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 邻域扩张
1)  contiguous range expansion
邻域扩张
2)  neighborhood extending
邻域扩展
1.
At the basis of analyzing different boundary tracking algorithms,boundary point estimate algorithm based on angle and boundary point searching algorithm based on circumferential neighborhood extending were advanced to avoid tracking trap and to improve the robust of the boundary tracking algorithm.
通过分析不同算法的特点,提出了基于已知点夹角的边界点预估计算法和基于圆弧邻域扩展的边界点搜索算法,以避免跟踪进入搜索陷阱,提高边界跟踪对边界变化的鲁棒性。
3)  adjacent diffusion
邻域扩散
1.
Based on the combination of the adjacent diffusion method and the selective smoothing filter,a new anisotropic diffusion algorithm for image enlargement is proposed,which is called as the adjacent diffusion and selective smoothing algorithm(ADASS).
提出了一种新型的各向异性扩散图像放大的邻域扩散选择平滑法(ADASS),将邻域扩散法与选择平滑滤波器相结合,降低了算法的复杂度,并提高了图像的放大质量。
4)  region expansion
区域扩张
1.
An improved algorithm for image segmentation is proposed based on region expansion in paper.
在简单区域扩张的基础上,结合直方图阀值分割的思想,本文提出了一种改进的区域扩张图像分割算法。
2.
An algorithm of region expansion based on region depth marking is given to compute the distance between two regions on .
在区域深度标记的基础上给出区域扩张的处理方法,然后用区域扩张计算图像中二个区域之间的最短距离,这种区域扩张算法只需要对图像进行2次扫描即可完成,适合处理数据量大的数字图像。
5)  Liph-extension domain
Liph-扩张域
6)  region growing
区域扩张
1.
Heuristic region growing mesh reconstruction algorithm;
启发式区域扩张网格重构算法
补充资料:域的扩张


域的扩张
extension of a field

域的扩张[e劝曰幽,ofa位月;p~甲H拙uo皿l 一个域,它包含给定域作为子域.记号K/介表示K是域k的扩张.这时,K也称为k的扩张域(o记rfield). 设K/k和L/k是域k的两个扩张一个域同构中:K~L称为扩张的同构(加伽中比m of extensions)或域的k同构(k·切Ino甲城mof反lds),是指甲在北上为恒同映射.如果存在一个扩张的同构,则称这两个扩张是同构的(isOInO甲泳).若K=L,则职称为扩张K/k的自同构(autornorp恤moftheex记nsion).一个扩张的所有自同构的集合构成一个群Aut(K/k).如果K厂北是G曲幽扩张(G由佑ex怡璐kin),则记这个群为C司(K/幻并称为域K在k上的G习」015群(Ga』oisgto叩),或扩张K/k的C司。坛群.如果C恤】。is群是个Abel群,则称该扩张为Abel的(A次沁川). 域K中的元素“称为在k上是代数的(碱罗b邝北),如果它满足系数在介中的某一代数方程,反之,则称为超越的〔坛山妞以泊山勿因).对每个代数元“,存在唯一的首项系数为1的多项式天(x),在多项式环k「x]中不可约,使得天(“)=o.k上任一多项式,如果以:为根,则必被天(x)整除.这个多项式称为二的极小多乎拳(功如址阎卯l”1o耐)一个扩张K/k称为伏举的(司罗腼允).如果K中每个元素在k上是代数的.非代数的扩张称为超越的(transeendental).一个代数扩张K/k,若满足条件:k〔x]中每个不可约多项式如果在K中有一个根,则该多项式在K【x]中必分解为一次因式之积,那么就称此扩张为正规扩张(加m对extemion).子域k称为在K中是代数闭的(秘罗bra沁动yc】伪ed),是指K中在k上代数的元素一定属于k.换句话说,K/k中的元素都是k上超越元.一个域若在其所有扩张中都是代数闭的,就称为代数闭域(拟罗b毗团yc』os曰挽ld) 扩张K/k称为有限生成的(俪回y罗朋ra曰)(或有尽掣犷学(~碗of如i晓娜)),如果存在K中有限子集,使得K与包含S和此的最小子域重合.此时我们说K由S在k上生成.如果K由一个元素戊在k上生成,则称它为手犷苹(s恤甲Ie~加)或夺厚犷琴(p山面ti呢~ion),并写为K=k(:)一个单代数扩张k(叼由“的极小多项式完全确定.更确切地说,若介(幻是另一单代数扩张,而人=儿,则必存在扩张的同构k(“)~k(刀),将“映为口.进一步,对任一不可约多项式f6k[X],必存在一单扩张k(幻,其极小多项式天“不这个单扩张可由作商环丸[x]/f火[X]构作出来.另一方面,对任一单超越扩张k(动,必有扩张的同构k(幻~k(x),这里k(x)是k上以x为变元的有理函数域.任一有限型扩张可以通过作有限步单扩张而得到. 扩张K/k称为有限的(助ite),是指K作为k上向量空间是有限维的,否则称为无限的(in助触).这向量空间的维数称为K/k的次数(‘kg氏),记为lK:k」.每个有限扩张都是代数扩张,每个有限型代数扩张都是有限的.单代数扩张的次数即等于其相应的极小多项式的次数.另一方面,单超越扩张是无限的. 假设给出一个扩张列KCLCM,则M/K是代数的,当且仅当L/K和M/L均为代数的,进而言之,研人是有限的,当且仅当L/K和M/L均为有限的,并有 [M:K」”[M二L」【L:K】. 如果尸/k和Q/k是两个代数扩张,PQ是尸与Q在它们的公共扩域中的复合域(co功positUrn),则PQZk也是代数的. 也可见可分扩张(义pan山le ext。招ion);超越扩张(加mcendental extension).
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条