1) tangent hyperplane
切超平面
1.
We on study tangent hyperplane of n-dimensional quadratic surface by using the characteristic root,we give a necessary and sufficient condition for plane to be the tangent hyperplane of n-dimensional quadratic surface.
利用特征根研究n维二次曲面的切超平面问题,给出平面为n维二次曲面的切超平面的充要条件。
2) robust sliding mode hyperplane
鲁棒切换超平面
3) switching hyperplane
切换超面
1.
The special switching hyperplane constrains the states of the system to lie on the sliding mode from beginning to end ,and eliminates the reaching-mode which dissolves the robustness problem of reaching interval.
设计的特殊切换超面使系统状态自始至终处于滑动模态 ,而无趋近模态 ,解决了趋近模态的鲁棒性问题 ,使系统具有响应过程的完全鲁棒性 。
4) the shear plane
剪切平面
5) tangent plane
切平面
1.
The algorithm of the static voltage stability region s tangent plane through the characteristic vector method or the implicit function derivative method is presented in the total parameter space,which can provide quantitatively the influence degree of all kinds of parameters on the voltage stability region.
提出了基于全参数空间的静态电压稳定域的2种切平面计算方法:特征向量法和隐函数求导法。
2.
And the tangent plane of three characteristic curves on the tire determines the spatial position of the tested wheel.
每个车轮使用3个线结构激光传感器,通过求取轮胎上3条特征曲线的切平面来确定车轮的空间位置。
3.
Results and Conclusion\ This paper gives the concept of bilaternal angle density and coangle density of fractal sets, gives definition of tangent and tangent plane of fractal sets, and discusses its existing conditions.
方法 通过推广角密度概念为双侧角密度与余角密度 ,将切线与切平面概念引入到分形集中 。
6) secant facet
切割平面
1.
In mathematics,an ellipsoidal surface can be approximated by a series of continuous secant facets,each of which passes through four corner points of corresponding grid formed by two geodetic parallels and two meridians and is taken as mapping plane.
以规则的经纬网格为单元,以每4个网格角点所构成的平面来切割并逼近椭球面,椭球面上同纬度的点子均以椭球短轴上的相应点为投影中心投影到各切割平面,采用这种类似楔形的投影方式,将减小长度投影变形的最大值,并使相邻图幅之间保持空间连续。
2.
In this projection mode, the ellipsoidal surface can be approximated mathematically by a series of continuous secant facets which are all isosceles trapezoids.
本文主要采用了两种投影方式将椭球面上的各点按经纬网格投影到相应的切割平面上:楔形投影和按各点的椭球面法线进行投影。
补充资料:从切平面
从切平面
rectifying [dane
从切平面[recti加毛两ne;cnp咖二,.川。。刀oeKoeT‘] 曲线r=r(t)(见线(曲线)(五加(curve)))上给定点A处的Fr己net标架(见Fr毛net三棱形(氏net tJ止曰拍n))中的一个平面,由曲线在这个点的切线(ta叫笋ni】ir屹)t和.lJ法线(bino仃庄d)b张成.从切平面的方程可写成}x一x(A)Y一八助z一:(A)! }x‘(A)y’(A)z‘(A){ },__’‘.-一_‘’_一l=0. 1 1 yz}}zx(1 xy{{ !}y艺}}“x}}X夕}{或 (R一r)r‘[r’,r’‘」=0,这里r(r)二(x(t),夕(。),:(:))是曲线的方程. 八、A,C叨opoa撰【补注】
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条