1) Weighted Hardy inequality
带权hardy不等式
2) Hardy's inequality with weight
加权Hardy不等式
3) Hardy inequality
Hardy不等式
1.
The fundamental solution and Hardy inequality for a class of degenerated elliptics operators with a double-weight;
一类双权退化椭圆算子的基本解及Hardy不等式
2.
In this paper,the existence of the nontrivial solution to a class of quasi-linear elliptic problem is investigated based on the Hardy inequality and the Mountain Pass Geometry.
使用Hardy不等式和山路几何研究了一类拟线性椭圆问题非平凡解的存在性。
3.
This paper discusses a class special elliptic equation with strong singular item and critical Sobolev exponents by Variational method in PDE and Hardy inequality.
运用变分方法及Hardy不等式讨论了一类特殊的椭圆方程,证明了在一定条件下方程解的存在性。
5) Hardy-Littlewood inequality
Hardy-Littlewood不等式
1.
The Hardy-Littlewood inequality is important in analysis mathematics and its applications.
著名的Hardy-Littlewood不等式在分析数学及其应用中均起着重要的作用,但要求出该不等式中的最佳常数的值,却是一个困难的问题。
2.
A local Aλ_r (Ω)-weighted Hardy-Littlewood inequality for differential forms satisfying the A-harmonic tensors is proved.
首先证明了A-调和张量的加Aλr(Ω)-权函数的局部Hardy-Littlewood不等式,此结果类似于Hardy和Littlewood的一个早期不等式。
3.
IIn this paper, we consider the Hardy-Littlewood inequality for p-harmonic type equation.
本篇文章我们主要是研究p-调和类型张量的Hardy-Littlewood不等式。
6) Sobolev-Hardy inequality
Sobolev-Hardy不等式
1.
(Using) Sobolev-Hardy inequality,Mountain Pass lemma and Concentration compactness principle,the existence of positive solution was proved under the certain conditions that the cofficients and exponents of the(equation) meet.
利用Sobolev-Hardy不等式、翻山引理和第二集中紧原理,在方程的系数和指数满足一定的条件下得到了方程正解的存在性结果。
2.
The authors discuss the existence of positive solution for a p-Laplace equation with singular weight by using Sobolev-Hardy inequality and the Mountain Pass Lemma.
利用Sobolev-Hardy不等式和山路引理,讨论了一类包含奇性权p-Laplace方程在具有光滑边界开集上正解的存在性。
3.
We use the decomposition of the filtration of the Nehair manifold via the variation of domain shape and Sobolev-Hardy inequality.
利用Nehair流形的过滤分解以及Sobolev-Hardy不等式证明下述问题的多解的存在性:-Δu+u=|u|p-2u/|x|s in Ω u=0 on Ω其中Ω是一multi-bump域,ΩRN,2
补充资料:Hardy不等式
Hardy不等式
Hardy inequality
吵理报彝砂否料黯”‘’‘”-矛「玉1,,「一1,于。, ”目Ln」LP一l」,二,‘’ 其中a。不全等于零.在这个不等式中,常数(p/(p一 l))p是最佳的. 2)羊丁移分的Ha[dy不等术: )一…介(!)‘!…’J二〔司’i,了‘·,,一 P>l, 和 1 Ji,(!)Jt…’J一i,·“·,,’“一‘·对于使不等式左端为有限的一切函数,这两个不等式成立,只是f(义)在(O,十的)上几乎处处为零的情况除外.(在这种情况下,不等式变为等式).常数(P/(夕一l)户)和vp是最佳的. Ha川y积分不等式可以推广到任意区间:引一夕〔!)J!}’己…i,二了‘·,,,己一’一告,引一i,(!)‘!…’/二i,二了(·,,”dx,一告,其中O(a
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条