1) compressible Navier-Stokes equations
可压Navier-Stokes方程
1.
Under the assumptions that the pressure P=Aργ and the viscosity coefficient μ=μ(ρ)=Cρθ,where A>0,C>0 are constants,ρ is the density,γ>1 is the adiabatic index and θ∈(0,+∞),it is proved that the compressible Navier-Stokes equations have four kinds of traveling-wave solutions,two of which have vacuum boundaries.
在压力P=Aργ,粘性系数μ=μ(ρ)=Cρθ(其中A>0,C>0为常数,ρ为密度,θ∈(0,+∞),γ>1为绝热指数)的假设下,得到了一维可压Navier-Stokes方程的4类行波解,其中2类具有真空状态。
2.
In this thesis, we are concerned with the existence, uniqueness and nonlinear stability of stationary solutions to the compressible Navier-Stokes equations effected by the external force of general form in R~3, and the large time behavior of the non-stationary solutions is also studied.
本文讨论了R~3上一般形式的外力作用下的可压Navier-Stokes方程静态解的存在性,唯一性,稳定性以及相应非静态解的大时间行为。
3.
In this paper,we prove the existence and uniqueness of the weak solution of the one-dimensional compressible Navier-Stokes equations with density-dependent viscosity,i.
本文证明一维粘性依赖于密度(μ(ρ) =ρ~θ)可压Navier-Stokes方程的自由边界问题当θ∈(0,γ/2],γ>1时弱解的全局存在性和唯一性。
2) compressible Navier-Stokes equations
可压缩Navier-Stokes方程
1.
Asymptotic stability of solutions for one-dimensional compressible Navier-Stokes equations;
可压缩Navier-Stokes方程行波解的渐近稳定性
2.
Asymptotic behavior of solutions to the full compressible Navier-Stokes equations in the half space;
半空间一维可压缩Navier-Stokes方程解的渐进性
3.
By applying Gronwall′s inequality,this paper proves the uniqueness of the weak solution of compressible Navier-Stokes equations with vacuum and gravitational force in Lagrangian coordinates.
通过运用Gronwall不等式,在Lagrangian坐标系下,证明了带真空和外力的可压缩Navier-Stokes方程初边值问题弱解的唯一性。
3) incompressible Navier-Stokes equations
不可压Navier-Stokes方程
1.
A mesh adaptation technique via a posterior error estimate for incompressible Navier-Stokes equations;
不可压Navier-Stokes方程基于误差估算的网格自适应解法
4) non stationary compressible Navier Stokes equation set
非定常可压缩Navier-Stokes方程
5) two dimensional incompressible Navier Stokes equation
二维不可压Navier-Stokes方程
6) viscous incompressible Navier-Stokes equations
粘性不可压缩Navier-Stokes方程
补充资料:化学平衡等压方程
分子式:
分子量:
CAS号:
性质:见范托夫方程。
分子量:
CAS号:
性质:见范托夫方程。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条