说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 双全纯等价
1)  biholomorphic equivalence
双全纯等价
2)  biholomorphic
双全纯的
3)  biholomorphic mappings
双全纯映照
1.
The paper studies a subfamily of biholomorphic mappings on Ω __the family of mappings whic have the parametric representation and some properties of them,concering the growth,covering and distortion theorems.
设Ω是Cn 中具有C2 定义函数的有界平衡拟凸域 ,在Ω上引进一个双全纯映照子族———具有参数表示的映照族 ,研究其一些性质 :包括增长定理、掩盖定理 ,得到其与星形映照同型的增长定理及掩盖定理 。
4)  biholomorphic isomorphism
双全纯同构
1.
Then we proved that for any two Fuchsian groups Г_1 and Г_2 such that H/Г_1 and H/Г_2 are two conformally equivalent hyperbolic Riemann surfaces, a conformal mapping from HГ_1/Г_1 onto HГ_2/Г_2 induces a biholomorphic isomorphism from.
然后证明了对于两个Fuchs群Γ_1和Γ_2,如果H/Γ_1和H/Γ_2是两个共形等价的双曲型Riemann曲面,则从H_(Γ_1)/Γ_1到H_(Γ_2)/Γ_2的一个共形映射诱导了从V(Γ_1)到V(Γ_2)的一个双全纯同构。
5)  biholomorphic mapping
双全纯映射
6)  biholomorphic transformation
双全纯变换
补充资料:双全纯映射


双全纯映射
bihoiomorphic mapping

Bergtnan projection),见IAZ」.对具有C人,人>;2边界的强伪凸域,C“一’一‘(。>0、如果左二2,3,二,否则。二0)的可扩张性是由L Lempert和5.Pin巍k得到的.对具有实解析边界的(弱)伪凸域甚至可全纯扩张到闭包的一个邻域,见IAI}对真全纯映射(properh创omor-Phie maPPing)也有类似的结果. 一个双全纯映射是真的(即一紧集的原象是紧的),这是因为f一’是连续的.Riemann定理在下述意义下不成立二从C”中的多圆盘到C’中的球上:不存在真全纯映射,其中任何。。>1,见IA41.因此(‘”扭)])中的函数论强烈地依赖于函数的定义域.关于C”中(单位)球内的函数论见[A51;关于多圆盘内的函数论见{A6]·关于擎拿等咚射(en‘ire holomorphicmaPpin娜)和它们的值分布见[A 7].双全纯映射【bihd皿阅户icm即Pi飞;6.肠脚州脚况价诵钾一e],全孕回拍(holomorphic isomorphism),全纯(holomorphlsm),伪共形映射(声eudo一conformalmapping) 单叶共形映射(conformal mapping)在多复变量情形的推广一区域D仁C”到一区域D’ CC”_上的全纯映射(holomorphle mapping)称为一平拿等咚射(biho-lomorPhic mapping),如果它是一对一的.双全纯映射在D内是非退化的;它的逆映射仍然是双全纯映射. 在一双全纯映射下全纯域(domain of holomor-phy)映为一全纯域,全纯函数,多重调和函数与多重卜调和函数在双全纯映射下也都是不变的.如果。>1双全纯映射不是保角的(除了许多线性映射以外)并且Riemann定理(R,emann theorem)对双全纯映射是不成立的(例如CZ中的球和多圆盘不能双全纯地相互映射)一区域D到自身上的双全纯映射称为一(全纯)自同构(holomorPhle automorPhism):如果。>1,存在单连通区域,它们除了恒同映射外都不自同构,【补注】关于双全纯映射的边界性质得到了下列结果.CFefferman定理(C.Feffermantheorem):在具有C戈光滑边界的强伪今琴(s tron廖y pseu-do一con vex domains)之间的双全纯映射可以C冶光滑扩张成两区域的闭包之间的一个微分同胚,见!A3].这个结论对如下情形也成立:区域仅仅是伪凸的,但其中一个满足关于Bergman射影的争件R(condition R for
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条