说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> Banach空间的型
1)  type of Banach space
Banach空间的型
2)  Banach space of type p
p型Banach空间
1.
Moment complete convergence for array of radom elements in Banach space of type p;
p型Banach空间B值随机排列元的矩完全收敛性
2.
Meanwhile,the moment complete convergence for arrays of rowwise independent random elements in Banach space of type p is investigated.
同时研究了p型Banach空间中行独立的随机元阵列的矩完全收敛性。
3)  type 2 Banach space
2型Banach空间
4)  Σ1e type Banach space
Σe1型Banach空间
1.
Gives the special structure of the spectrum of bounded linear operators on a class of indecomposable Σ1e type Banach spaces;shows that there is a Σ1e type Banach space on which there is a well-bounded operator of type (B) such that the spectrum of it is the infinite countable set.
给出一类不可分解的Σe1型Banach空间上有界线性算子的谱的特殊结构,证明了存在某个Σe1型Banach空间使其上某个(B)型良有界算子T的谱σ(T)是可数无限集。
5)  ss:Banach space of stable type p
稳定p型Banach空间
6)  ∑_e~1-type Banach space
∑_e~1型Banach空间
1.
Firstly, on the basis of the new type of Banach spaces ∑_e~1 introduced by Gonzalez and Herrera, the theory of linear operators , strongly continuous (semi-)groups and the properties of cosine family are studied on the ∑_e~1-type Banach spaces, they are main contents in this paper.
本文的研究内容主要包括三个方面: 一是在Gonzalez和Herrera引进新型Banach空间类∑_e~1的基础上,研究∑_e~1型Banach空间上线性算子理论、强连续线性算子(半)群和余弦族的性质,这是本文的主要内容。
补充资料:Banach解析空间


Banach解析空间
Banach analytic space

  析映射U~G的芽的层对形式为x~毋(x)f(x)的映射的芽的子层的商,其中卿U~Hom(F,G)是局部解析映射,而O(W)C小(G)是由在W中取值的映射生成的.层集中(W)定义了由E冶1犯比空间的开集及其解析映射的范畴K到f一’(0)上的集合的层的范畴的函子. 一个拓扑空间X,如果具有从范畴K映到X中的集合(其中所有点有同构于某个局部模型的邻域)的层的范畴的函子,就称为压m朗h解析空间(Rm朗h analytjcs详戊). 复解析空间形成E以naeh解析空间范畴的一个完全子范畴,一个E匕朋‘h解析空间是有限维的,如果它的每一个点x有同构于这种模型产(U,F,f)的邻域,且存在映射g:U~U,它诱导出模型的一个自同构,且有完全连续的微分dg二(【11). 压m朗h解析空间的第二种特殊情形是B以比止h解析谁形(E以朋由anal沙n以‘儿ld),即局部同构于E以.队上空间的开集的解析空间一个重要例子是C上的Rm朗h空间的有闭余空间的闭线性子空间的流形. 亨枣呻窖的丘现朗h解衍卑(刨把勿一由助月E以na比出皿lytics比),即形式为召(U,口,f)的模型,具有类似于经典性质的局部性质:原始分解,Hilbert零点定理,局部描述定理,等等,都是可应用的([2]).山皿dl解析空间!Ban汕analytic spa“,玩毗、,8oa“aJ“T“叨ecK0e nP0c1Pane一、Bo} 解析空间概念的无限维推广,‘白产生J对解析结构形变(〔le阮川刀atlon)的研究,这甩,局部模型是1至11长Icll解析集(Banaclla耐卯c set),即C「的山.山空间(即na山s禅ce)E的开集U的子集尸(U,八f)一f’(0),其中少仁 卜F是映到压川aeh空间F的解析映射(a耐 ytlctnaPPing).与有限维情形不同之处在于:在局部模型「.它没有给定一个结构层,似有一个层集小(体),其中体是任意Banaeh空间G中的开集这时,小(G)定义为解
  
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条