说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> L-预边界算子
1)  L-preboundary Operator
L-预边界算子
1.
Determining an L-pretopology by an L-pre-R-neighborhood System Operator,by an L-preexterior Operator,or by an L-preboundary Operator;
用L-预远域系算子、L-预外部算子或L-预边界算子确定L-预拓扑
2)  boundary operator
边界算子
1.
The paper presents a definition to the topological space by means of applying boundary operators.
关于拓扑空间的定义有多种形式,有别于传统的方法,本文利用边界算子定义了拓扑空间,给出了完整的证明;还对边界算子的特征性质进行了讨论;最后,将边界算子的特征性质归结为一条。
2.
Moreover,in traditional atomical lattices,Theorem6 (topology determined by boundary operator),Theorem7 (topology determined by deriuved operator).
1979年王国俊提出了拓扑分子格的理论,本文的讨论就是在这一理论的基本框架下进行的,所得的主要结果是:刻划远域特征的定理,远城系确立拓扑的定理,以及在正统原子格中边界算子、导算子确立拓扑的定理。
3)  pseudo-boundary operator
伪边界算子
1.
Some notions,such as open pretopologies,boundaries,pseudo-interior operators,pseudo-boundary operators,are defined on a complete lattice L which has orderreversing involution,called DeMorgan algebra.
在有逆序对合对应"′"的完备格(或称为DeMorgan代数)L上定义了开预拓扑、边界、伪内部算子和伪边界算子,并证明了L上的所有开预拓扑,所有伪内部算子和所有伪闭包算子构成了彼此同构的完备格。
4)  weak boundary operator
弱边界算子
5)  L-pre-R-neighborhood System Operator
L-预远域系算子
1.
Determining an L-pretopology by an L-pre-R-neighborhood System Operator,by an L-preexterior Operator,or by an L-preboundary Operator;
用L-预远域系算子、L-预外部算子或L-预边界算子确定L-预拓扑
6)  L-preclosure Operator
L-预闭包算子
1.
It is proved that the set of all L-pretopologies,the set of all L-preclosure operators,and the set of all L-preinterior operators on a given set X are all complete lattices which are isomorphic to each other.
证明了定理:1)给定集合X上的所有L-预拓扑、所有L-预闭包算子、所有L-预内部算子构成了彼此同构的完备格;2)X上的所有满足一定条件的L-预拓扑与所有L-预N-导算子构成了同构的完备格。
补充资料:凹算子与凸算子


凹算子与凸算子
concave and convex operators

凹算子与凸算子「阴~皿d阴vex.耳阳.勿韶;.留叮.肠疽“‘.小啊j阅雌口叹甲司 半序空间中的非线性算子,类似于一个实变量的凹函数与凸函数. 一个Banach空间中的在某个锥K上是正的非线性算子A,称为凹的(concave)(更确切地,在K上u。凹的),如果 l)对任何的非零元x任K,下面的不等式成立: a(x)u。(Ax续斑x)u。,这里u。是K的某个固定的非零元,以x)与口(x)是正的纯量函数; 2)对每个使得 at(x)u。续x《月1(x)u。,al,月l>0,成立的x‘K,下面的关系成立二 A(tx))(l+,(x,t))tA(x),00. 类似地,一个算子A称为今单(~ex)(更确切地,在K上“。凸的),如果条件l)与2)满足,但不等式(*)用反向不等号代替,并且函数粉(x,t)<0. 一个典型的例子是yP‘KOH积分算子 通rx‘t、1二f天(t.:,x(s))山, G它的凹性与凸性分别由纯量函数介(t,s,。)关于变量u的凹性与凸性所确定.一个算子的凹性意味着它仅仅包含“弱”的非线性—随着锥中的元素的范数增加,算子的值“慢慢地”增加.一般说来,一个算子的凸性意味着,它包含“强”的非线性.由于这个理由,包含凹算子的方程在许多方面不同于包含凸算子的方程;前者的性质类似于相应的纯量方程,而不同于后者,后者关于正解的唯一性定理是不成立的.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条