1) additive map
可加映射
1.
Suppose thatΦ:A→A is an additive map and m,n are positive integers.
设Φ:■→■是可加映射。
2.
Using the additivity of the matrix,it is proved that every additive map preserving the lattices of invariant subspaces is of the form:Φ(A)=αA+φ(A)I(A∈Tn),where α is a nonzero scalar,φ:TnF is an additive map and I∈Tn is an identity.
利用矩阵的可加性,证明了Tn上的每一个保不变子空间格的可加映射Φ为:Φ(A)=αA+φ(A)I(A∈Tn),其中α是非零常数,φ∶Tn→F是可加映射,I∈Tn是单位算子。
3.
The form of each additive map φ:M→B(X) is proved that if there exist nonzero real m and n such that (m+n)φ(A2)-mAφ(A)-nφ(A)A ∈FI holds for all A ∈ M, then φ(A)=λA , where λ ∈F.
证明了若可加映射φ:M→B(X)满足A∈M,非零实数m和n,有(m+n)φ(A2)-mAφ(A)-nφ(A)A∈FI。
2) additive mapping
可加映射
1.
A note on the linearity of an additive mapping;
关于可加映射线性性质的注记(英文)
2.
We study in this paper the structure of additive mappings on triangular matrix algebras which preserve commutativity.
本文研究了三角矩阵代数上保持交换性的可加映射的结构。
3) additive maps
可加映射
1.
In this paper,we give characterizations of additive maps that satisfy [Ф(A~2),Ф(A)]=0 or Ф(A~(m+n+1))-A~mФ(A)A~n∈FI on some operator algebra A,where F is the underground field and I is the unit of the operator algebra A.
本文刻画了算子代数A上满足[Ф(A2),Ф(A)]=0或Ф(Am+n+1)-AmФ(A)An∈FI的可加映射的具体形式,这里F代表算子代数A的作用域,I代表算子代数A的单位元。
4) approximately additive mappings
近似可加映射
1.
We first introduce functional index A_r(-) to study approximately additive mappings.
我们通过引进泛函指标A_Υ(·)来刻画近似可加映射,证明了对于从群到Banach空间内的任一个映射f,只要A_Υ(f)是有界的,那么f在Hyers和Ulam意义下就是稳定的。
5) k-additive and centralizing mapping
k-中心化可加映射
6) additive mapping preserving commmutative zero-product
保交换零积的可加映射
补充资料:博尔加坦加
加纳北部边境城市,上部区首府。在沃尔特盆地北缘。人口1.89万。农畜产品集散中心,牛油果、玉米、牲畜、皮革的贸易甚盛。以篮篓编织手工业闻名。有肉类加工厂。公路中心。有航空站。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条