说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 局部有限子代数
1)  locally finite subalgebra
局部有限子代数
1.
Let U be quantum group Uq(f(K)), F(U) the locally finite subalgebra of U (i.
用U表示量子群Uq(f(K)),F(U)是U的局部有限子代数(即由量子伴随作用下局部有限的所有元素组成的U的子代数)。
2.
In this paper,by using the representation theory and structure of the locally finite subalgebra F(U) of the quantum group U = U_q(f(K)),we prove that every non-zero U-stable ideal of F(U) can both be generated by a sum of some highest weight vectors with distinct weights.
利用量子群U=U_q(f(K))的表示理论及其局部有限子代数F(U)的子模结构,证明了U_q(f(K))的局部有限子代数F(U)的任一非零理想均可由若干个具有不同权的最高权向量的和生成。
2)  locally finite algebra
局部有限代数
3)  locally finite submodule
局部有限子模
4)  locally finite
局部有限
1.
The notion of base-countably paracompact space is introduced and some of its equivalent characterizations are obtained:(i)X is a base-countably paracompact space if there exsists an open basis B for X with |B|=ω(X) such that every countably open cover U={Ui}i∈N of X has a locally finite countabe refinement B′ by members of B,B′={Bi}i∈N and BiUi.
引入了基-可数仿紧空间的概念,给出基-可数仿紧空间的一些等价刻画,获得以下结果:(i)X是基-可数仿紧空间当且仅当存在X的一开基B,|B|=ω(X),对于X的每一可数开覆盖U={Ui}i∈N,都存在B′B,使得B′={Bi}i∈N是U的局部有限的可数开加细,且BiUi;(ii)设X是正规空间,X是基-可数仿紧空间当且仅当存在的一开基B,|B|=ω(X),使得X的每一可数开覆盖都存在由B中的元构成的局部有限的收缩。
2.
Author mainly proves following:(1)X is a Base-paracompact space iff X is a Base-countably paracompact space and every open cover of X has a σ-locally finite open refinement by members of the basis which witnesses Base-countably paracompact space.
主要证明了如下结果:(1)X是基-仿紧空间当且仅当X是基-可数仿紧空间,并且X的每一开覆盖都存在满足X是基-可数仿紧空间的开基的元构成的σ-局部有限的开加细。
3.
In [4], the authors have proved that if a locally finite group is a core-finite, then it .
文[4]证明了局部有限的Core-有限群是abelian-by-finite。
5)  finite dimensional subalgebra
有限维子代数
6)  sigma locally finite family of subsets
子集的局部有限族
补充资料:Cartan子代数


Cartan子代数
Cartan subalgebra

  Cal出口子代数{C田七口叨b目geb.;Kalyr她叫八翻n石碑l,域k上有限维Lie代数g的 g的一个等于它在g内的正规化子的幂零子代数.例如,若g是某一固定阶的全体复方阵所构成的Lie代数,则一切对角方阵所构成的子代数就是g的一个Cartan子代数.Cartan子代数也可以定义为g内一个幂零子代数t,它等于它的Fitting零分支(Fittingnull一compenent)(见Lie代数表示的权(weight ofarePresentation of a Lie al罗bra)) 助={X。。:vH:t〕nx.,。z((adH)月‘H(幻=0)},这里ad代表g的伴随表示(见lie代数(Lieal罗-bra)). 进一步假设k的特征是零.这时,对于任意正则元x钊,g中一切被adX的幂所零化的元素的集合n(X,g)是g的一个Cartan子代数,并且g的每个Cartan子代数都具有tt(X,g)的形状,X是某一个适当的正则元.每个正则元属于且只属于一个Cartan子代数.。的所有Cartan子代数的维数相同,等于g的誉(rank).Cartan子代数在Lie代数的满同态之下的象仍是Cartan子代数.如果k是代数闭的,则g的一切Cartan子代数都是共扼的;更确切地说,它们可以被g的自同构代数群D中的算子将一个变到另一个,这里D的Lie代数是adg的换位子代数.如果q是可解的,那么不假设k是代数闭的,上述断言仍然成立. 设G或是特征为零的代数闭域k上的一个连通线性代数群,或是一个连通Lie群,而g是它的Lie代数.那么g的一个子代数t是一个Cartan子代数,当且仅当它是G的一个ca比坦子群(CartaJ飞subgrouP)的Lie代数 令g是k土1个有限维向量空间V的全体自同态所构成的Lie代数叭伊)的一个子代数,J是叮印)中包含g的最小的代数的Ue代数(Lie al罗bra,al罗braie).如果下是可的一个Cartan子代数,则下门@是g的一个Cartan子代数,井且如果t是g的一个Cartan子代数汀是91(V)中包含t的最小的代数子代数,则下是可的一个Cartan子代数且t二『自务. 令人CK是一个域扩张g的一个子代数t是Cartan子代数,当且仅当t⑧*K是g⑧*K的Cartan子代数 当q是一个半单Lie代数(这是E.Cartan所使用的名称)时,Cartan子代数起着非常重要的作用.在这种情形下,g的每个Cartan子代数t都是交换的并且由半单元素组成(见J.闭aII分解(Jordande~户万1-tion)),且价Inog型(萄lling form、在t上的限制是非奇异的‘【补注】g的一个兀素h叫做正则的(re酗盯),如果g的自同态adh的Fitting零分支的维数最小.在以元素是正则的条件定义一个Zarlski开子集的意义下,g中儿乎所有的”元素是正则的.对于正则元h来说,adh的P’i往Ing零分支是Cartan子代数这一结果对于任意无限域上的有限维Lle代数都成立({A4],p.59).
  
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条