1) incompressible saturated poroelastic plate
饱和不可压多孔弹性板
1.
Based on the theory of porous media, with the hypothesis of Kirchhoff and small deformation, a dynamic bending mathematical model of incompressible saturated poroelastic plates with in-plane diffusion is established.
根据多孔介质理论,在Kirchhoff假定和小变形前提下,针对流体的面内扩散情形,建立了饱和不可压多孔弹性板动力弯曲的数学模型。
2) incompressible saturated poroelastic column
饱和不可压多孔弹性柱
3) saturated poroelastic beam
饱和多孔弹性梁
1.
Based on the mathematical model for large deflection of saturated poroelastic beam,the dynamical behavior of simply supported saturated poroelastic beam with two permeable ends,subjected to a suddenly applied transversal constant load or a harmonic load,was investigated with Galerkin truncation method.
基于饱和多孔弹性梁大挠度变形的数学模型,利用Galerkin截断法,本文研究了两端可渗透的简支饱和多孔弹性梁分别在突加横向均布常载荷和简谐载荷作用下的动力响应,得到了梁弯曲时挠度、弯矩以及孔隙流体压力等效力偶等随时间的响应,考察了不同载荷下多孔弹性梁弯曲的响应特征。
4) fluid saturated poroelastic media
弹性饱和多孔介质
5) poroelastic plate
多孔弹性板
1.
Based on the theory of porous media,with the hypothesis of Kirchhoff and small deformation of solid phase,a dynamic bending mathematical model of incompressible saturated orthotropic poroelastic plates with in-plane diffusion was established.
基于多孔介质理论,在Kirchhoff直法线假定以及小变形和线性本构关系前提下,建立了饱和不可压正交各向异性多孔弹性板的线性动力分析模型。
6) transversely isotropic saturated poroelastic media
横观各向同性饱和弹性多孔介质
1.
The Biot s wave equations of transversely isotropic saturated poroelastic media excited by non_axisymmetrical harmonic source were solved by means of Fourier expansion and Hankel transform.
应用Fourier展开和Hankel变换求解了简谐激励下横观各向同性饱和弹性多孔介质的非轴对称Biot波动方程 ,得到了一般解· 用一般解给出了多孔介质总应力分量的表达式· 最后对求解横观各向同性饱和弹性多孔介质非轴对称动力响应边值问题的方法作了系统说明 ,并且给出了数值分析特例
补充资料:无弹性架压磁测力传感器压头
无弹性架压磁测力传感器压头
无弹性架压碰测力传感器压头
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条