1) sum of squares
平方和
1.
We prove that if 9 divides k or k is divisible by a prime q (q= ± 5 (mod 12)), then the sum of squares of any k consecutive positive integers cannot be a nth power of prime (n ∈ N).
对给定的正整数k,证明了:当9|k或q|k(q=±5(mod 12)是一个素数)时,任何k个连续正整数的平方和不是素数的n次幂(n∈N);当q|k(q=±1(mod 12)是一个素数)时,可定出模q的两个剩余类,而不属于其中任何一个剩余类的每一个非负整数x所确定的k个连续正整数的平方和(x+1)2+(x+2)2+…+(x+k)2不是素数的n次幂(n∈N)。
2.
In this paper, we prove that the Diuphantion equation(l) has not positive integers solution, or the sum of squares of AT consecutive positive integers is not a prime or a prime power, where K - 4k, 9k, qk (q=±5(mod 12), q is a prime).
指出了文献[4]中证明过程的错误,得到了比文[4]中更一般的结论,当K=4k,9k,qk(q≡±5(mod 12)为素数)时,Diuphantion方程(1)无正整数解,即K个连续正整数的平方和不是素数或素数方幂。
3.
In this paper we proved that the sum of squares of 4k consecutive positive integers is not a prime or a prime power.
证明了 :4 k( k为正整数 )个连续正整数的平方和不是素数或素数方
2) square sum
平方和
1.
The properties of two number square sum problem;
两数平方和问题的性质探讨
2.
And from this paper we can know that prime number can express two integer square sums and the uniqueness expression.
仅用整除及同余知识 ,从另一种角度对不定方程x2 +y2 =m的整数解问题详细进行了讨论及推证 ,并得到了形如 4n + 1质数可表示为两个整数平方和及其表法唯一的问题。
3.
In this paper, with Baker s method,we obtain a necessary and sufficient condition for there exist infinitely many sets of m+1 consecutive positive integers such that the square sums of the integers are powers.
对于正整数m,本文运用Baker方法给出了m+1个连续正整数之平方和中存在无限多个完全方幂的充要条件。
4) sum of the squares of the degree
度平方和
5) column square sum
列平方和
1.
Besed on the related conclusions on linear model, this paper gives the mathematical definition of column square sum in orthogonal array and a strict derivation about it s computation formula.
应用数理统计中线性模型的有关知识给出了正交表列平方和的数学定义 ,并严格推导出它的计算公
6) the sum of two squares
二平方和
1.
We give necessary and sufficent conditions for an element of F to be the sum of two squares in F .
本文给出了只有一个 dyadic除子的分圆域中一个元素能表为二平方和的充分必要条
补充资料:残差平方和
分子式:
CAS号:
性质:在回归分析中,实际测定值与按回归线预计的值之差,称为残差。回归线各实验点残差之平方的加和,称为残差平方和。
CAS号:
性质:在回归分析中,实际测定值与按回归线预计的值之差,称为残差。回归线各实验点残差之平方的加和,称为残差平方和。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条