1) extreme wave
极限波
1.
Three-dimensional(3D) directional wave focusing is one of the mechanisms that contribute to the generation of extreme waves.
波浪聚焦被认为是产生极限波浪的重要机理之一,近年来受到普遍重视。
2) extreme waves
极限波
1.
So it is very meaningful to develop the theory for generating the extreme waves and to investigate the extreme wave characteristics.
极限破碎波浪是造成海洋结构物破坏的主要因素之一,对极限波浪的产生方法和特性进行研究具有重要的工程意义。
3) extreme wave
极限波浪
1.
A fully-nonlinear numerical model based on the time-domain higher-order boundary element method(HOBEM) is established to simulate the kinematics of extreme waves.
利用时域高阶边界元方法建立了模拟极限波浪运动的完全非线性数值模型,其中自由水面满足完全非线性自由水面条件。
2.
Thus the corresponding formula for the wave velocity can be used to describe kinematics beneath the extreme wave.
本文基于五阶Stokes规则波理论,提出了一种快速求解深海极限波浪运动特性的数学模型。
4) limiting wave height
极限波高
1.
Some new ideas on “limiting wave height"in shallow water is given by analyzing the cause of this physical phenomenon.
简单分析了产生这一物理现象的原因 ,对波浪在浅水中的“极限波高”有了一些新的认识。
5) waveform limit
波形极限
6) limit wave steepness
极限波陡
1.
We processed the field wave data from the Yellow River Delta during storms, then analyzed the characteristics of the waves according to Komars wave theory, and found that 44% waves without breaking were beyond limit wave steepness and the Goda line.
为确定适用黄河三角洲的波动理论 ,对黄河三角洲风暴期间及前后波浪连续观测资料进行了处理 ,将其投在komar波浪理论分区图中后 ,分析了风暴期间黄河水下三角洲波浪的波形特征 ,发现站位所在地适合的波浪理论主要为艾里波和斯托克斯波 ,风暴期间波浪变形 ,还存在少量超过极限波陡线的波浪 ,通过比较常见的极限波陡线 ,看出Miche曲线比较适合该研究区。
补充资料:上极限和下极限
上极限和下极限
upper and lower limits
上极限和下极限【u即era闭lower功l‘ts;。epx“戚,”“袱n“匆npe八e月M」 l)序列的上极限和下极限分别是给定的实数序列的所有部分(有限的和无穷的)极限(1而jt)中的最大极限和最小极限.对于任何实数序列{二。}(。=l,2,…),在扩充的数轴上(即在增添符号一的和+的的实数集合中)它的所有部分(有限的和无穷的)极限的集合是非空的,并且具有最大元素和最小元素(有限的和无穷的).部分极限的集合的最大元素称为序列的上极限(up详r lin五t)(腼sup),记为 。呱x。或。叭s叩x。,而最小元素称为下极限(lowerUmit)(Uminf),记为 黑‘·或。叭讨二。.例如,如果 x。=(一1)月则 黑‘”一’,。叭‘一‘·如果 x,,二(一l)”n,则 黑‘·一叭。叭二。一十二.如果 x,=n+(一1)”n,则 澳“一”,悠’一+呱任何序列都具有上极限和下极限,并巨如果一个序列是上(下)有界的,则它的上(下)极限是有限的.一个数a是序列{x。全(陀=1,2,…)的上(下)极限,当且仅当对于任何£>0,下述条件成立:a)存在数刀:,使得对于所有的指标n>。。,不等式x。a一。)成立:b)对于任何指标。。,存在指标”‘=n‘(£,n。),使得对于所有的指标n’>n。,不等式x。>a一。(x。十动成立.条件tl)意味着:对于给定的£>0,在序列{x。}中只存在有限个项无、,使得x。>a+。(x。<“一的.条件b)意味着:存在无穷多项x,.,使得x。>a一。(x。<“+。).如果两个极限都是有限的,则通过改变序列各项的符号,可使下极限化为上极限: 黑“·一。叭‘二 为使序列{x。}(n二1,2,…)具有极限(有限的或无穷的(等于符号一的和+的之一)),其必要和充分条件是 黑x一、,只义二 2)函数f(劝在一点x.,处的上(下)极限是f(x)在x。的一个邻域中的值的集合的上(下)界当这个邻域收缩到x{、时的极限.上(下)极限记为 画.f(·)[、f(·)〕· 设函数、f(x)定义在度量空间R上,并且取实数值.如果x{、〔尺,o(x。;。)是x。的s邻域,。>0,则丽f‘、、一l、f su。,丫·、1 L义‘O(尤。,£)J和 黑f(·)一、{二。黑;:,f(·))·在每一点xoR处,函数f(:)具有上极限了丈灭)和下极限‘f(x)(有限的或无穷的).函数了下刃在R上是上半连续的,函数f(x)在R上是下半连续的(在取值于扩充数轴的函数的半连续概念的意义下,见半连续函数(~一continuous function)). 为使函数.f(x)在点、。处具有有限的或无穷的(等于+的或一田)极限,其必要和充分条件是 华黑f(x)一煦。j.(’)· 函数在一点上的上极限(下极限)的概念可以自然地推广到定义在拓扑空间上的实值函数的情况. 3)集合序列{A。}(n=1,2,…)的上极限和下极限芬另i是集合 A二户叹A。,它是由属于无穷多集合A。的元素x组成的,以及集户乙、 县=业坠A。,它是由属于从某个指标”=n(x)开始的一切集合A。的元素x组成的.显然,Ac万【补注】在英文中,上极限又称supenorlin五t或】ilnitsllperior,下极限又称加几rior limit或止面t inferior.亦见上界和下界(upper and kiwer boullds). 一个集合的子集序列A,,A:,…的上极限和下极限由下列公式给出二 。叭式一*口招*态, 黑通一月贝户/
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条