1) GMM
广义矩估计
1.
The Effects of Financial Development on Foreign Trade and Their Regional Difference in China——Cointegration Analysis and GMM Based on Crossed Provinces Panel Data;
我国金融发展对国际贸易的影响及区域差异——基于跨省面板数据的协整分析和广义矩估计
2.
Controlling the endogeneity of two variables by using the GMM, we find that financial constrained firms significantly exhi.
在采用广义矩估计方法(GMM)合理控制模型的内生性偏误后,融资约束公司表现出强烈的现金-现金流敏感性,而非融资约束公司则没有表现出这种特征。
3.
Based on a panel of financial statement data for 116 listed manufacturing companies (including 11600datapoints) supplemented with user costs of capital, this paper apply GMM estimates of a Autoregressive Distributed Lag(ADL) Investment.
建立在116个在上海和深圳上市的制造业公司的财务报表平行数据基础上(包含11600个数据点),以及补充的资本使用成本数据,论文应用了一个自回归分布滞后投资支出模型的广义矩估计,模型包含投资、现金流、销售和资本使用成本变量。
2) GMM (generalized method of moments) estimation
广义矩(GMM)估计
3) GMM
广义矩估计法
1.
By constructing different measures of financial structure, this paper configures a dynamic panel data model to test the relationship between financial structure and economic growth, employing GMM.
文章首先通过构造衡量金融结构的不同指标,运用金融结构与经济增长的动态面板数据模型,并用广义矩估计法进行估计,得出了在人均GDP高的国家,股票市场比重也高的结论;为验证其显著性,文章把东亚国家分成银行主导型和市场主导型两组分别回归,结论是股票市场比重的提高与人均GDP有显著的关系, 因此, 东亚国家应积极发展股票市场,提高银行体系和股票市场的效率。
4) System GMM
系统广义矩估计
1.
Effects of International trade on China s Capital Formation and Regional Difference: Analysis Based on Dynamic Panel Data with System GMM Estimation;
对外贸易影响我国资本形成的效应与地区差异——基于系统广义矩估计的动态面板数据分析
5) simulated GMM
模拟广义矩估计方法
1.
The simulated GMM adopted in this paper is forthright and efficient.
采用SV模型的一个简捷高效的估计方法———模拟广义矩估计方法,以上证综合指数为样本,考查了涨跌停板制度对沪市股票收益波动的影响,并将SV模型的实证结果与GARCH模型进行了比较,发现SV模型的估计更符合实际;最后,利用Monte Carlo方法对股票收益序列进行了模拟和分析,进一步证实了这一结论。
6) Nonlinear Generalized Method of Moments (NLGMM)
非线性广义矩估计方法
补充资料:广义最小二乘估计
用迭代的松弛算法对线性最小二乘估计的一种改进。线性最小二乘估计在模型误差为相关噪声时是有偏估计,即其估计值存在偏差。这时采用广义最小二乘估计能获得较精确的结果。
假设所讨论的单输入单输出系统的差分方程模型是
式中{uk}和{yk}分别是输入和输出序列:和是算子多项式,它们的系数是需要通过估计来求出的未知数;z-1是单位延迟算子;{ek}是误差序列,它是零均值平稳相关噪声序列。为了进行广义最小二乘估计可以从形式上把ek变换成,这里,它的系数也是未知的。如果{ek}具有有理谱密度,则可把{εk}当作白噪声序列来处理。这样就把系统模型变成
相应的估计准则是
广义最小二乘估计就是使估计准则J为极小的参数估计。多项式A(z-1)、B(z-1)和C(z-1)的系数都是未知的,所以不能用一个线性算法获得广义最小二乘估计。
广义最小二乘估计采用迭代的松弛算法:先行固定C(z-1),估计A(z-1)和B(z-1),使J 趋于极小;然后固定A(z-1)和B(z-1),估计C(z-1),使 J 趋于极小。如此反复迭代,直至估计值收敛。这时每步只进行简单的线性最小二乘估计运算,迭代的初值取扗(z-1)=1。
广义最小二乘估计算法的估计精度高,已得到应用并获得不少成果。它的缺点在于:当信噪比较小时,J可能有多个局部极小点,估计结果不能保证收敛到全局最小点,即参数真值;它的计算量也比线性最小二乘估计增加很多。
这种算法也可推广到多输入多输出系统,并且有相应的近似递推估计算法。当误差{ek}为正态噪声序列时,这种算法还可以解释为极大似然估计的松弛算法。
参考书目
G.G.哥德温、R.L.潘恩著,张永光、袁震东译:《动态系统辨识:试验设计与数据分析》,科学出版社,北京,1983。(G.C.Goodwin and R.L.Payne,Dynamic System Identification:Experiment Design and Data Analysis, Academic Press, New York,1977.)
假设所讨论的单输入单输出系统的差分方程模型是
式中{uk}和{yk}分别是输入和输出序列:和是算子多项式,它们的系数是需要通过估计来求出的未知数;z-1是单位延迟算子;{ek}是误差序列,它是零均值平稳相关噪声序列。为了进行广义最小二乘估计可以从形式上把ek变换成,这里,它的系数也是未知的。如果{ek}具有有理谱密度,则可把{εk}当作白噪声序列来处理。这样就把系统模型变成
相应的估计准则是
广义最小二乘估计就是使估计准则J为极小的参数估计。多项式A(z-1)、B(z-1)和C(z-1)的系数都是未知的,所以不能用一个线性算法获得广义最小二乘估计。
广义最小二乘估计采用迭代的松弛算法:先行固定C(z-1),估计A(z-1)和B(z-1),使J 趋于极小;然后固定A(z-1)和B(z-1),估计C(z-1),使 J 趋于极小。如此反复迭代,直至估计值收敛。这时每步只进行简单的线性最小二乘估计运算,迭代的初值取扗(z-1)=1。
广义最小二乘估计算法的估计精度高,已得到应用并获得不少成果。它的缺点在于:当信噪比较小时,J可能有多个局部极小点,估计结果不能保证收敛到全局最小点,即参数真值;它的计算量也比线性最小二乘估计增加很多。
这种算法也可推广到多输入多输出系统,并且有相应的近似递推估计算法。当误差{ek}为正态噪声序列时,这种算法还可以解释为极大似然估计的松弛算法。
参考书目
G.G.哥德温、R.L.潘恩著,张永光、袁震东译:《动态系统辨识:试验设计与数据分析》,科学出版社,北京,1983。(G.C.Goodwin and R.L.Payne,Dynamic System Identification:Experiment Design and Data Analysis, Academic Press, New York,1977.)
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条