1) minimal normal congruence
最小正规同余
1.
Congruence-class of minimal normal congruence of di-Cω-semigroup generating by congruence pair can deduce two conditions:τ1 and τ2,so we can make minimal normal congruence graph of di-Cω-semigroup.
双Cω—半群中由同余对生成的最小的正规同余的同余类可以归纳为两种情况:τ1和τ2,由此可得双Cω—半群的最小正规同余图。
2) normal congruence
正规同余
1.
Minimal normal congruence of DI-C_ω-Semigroup generating by comgruence pair;
双C_ω—半群由同余对生成的最小正规同余
2.
By defining normal congruences and normal subsemigroup,the rectangular congruence pair is constructed to investigate the rectangular group congruences on E-inversive semigroup.
研究同余是研究半群的一种最常用的方法,以下主要通过定义正规同余和正规子半群来构造矩形同余对,从而研究E-逆半群上的矩形群同余。
3) the least regular semilattice congruence
最小正则半格同余
4) the minimum regular *-semigroup congruence
最小正则*-半群同余
1.
The aim of this paper is to study the minimum regular *-semigroup congruence on strongly P-regular semigroup S(P) ,which can also be written as simplify form γP when we take advantage of the regular*-transversal S° of S(P) .
主要研究了强P-正则半群S(P)上的最小正则*-半群同余。
5) least group congruence
最小群同余
1.
We give a relation R on a π-regular semigroup S described as: R={(aea m-1a 1f,(aea m-1a 1f)2)∈S×S,am∈RegS,a 1∈V(am),e,f∈E(S)} ∪{(vb n-1b 1ub,(vb n-1b 1μb)2)∈S×S|b∈RegS,b 1∈V(bn),μ,v∈E(S)} and the least group congruence ρ# generated by R.
在π -正则半群S中 ,给出了关系R={(aeam- 1 a1 f,(aeam- 1 a1 f) 2 ) ∈S×S|a∈S ,am ∈RegS ,a1 ∈V(am) ,e ,f∈E(S) }和由R生成的最小同余ρ#,给出了S的最小群同余的刻划 。
6) least band congruence
最小带同余
补充资料:弹性力学最小余能原理
弹性力学的能量原理之一,它可表述为:整个弹性系统在真实状态下所具有的余能(见应变能),恒小于与其他可能的应力相应的余能。其中可能应力是指满足平衡方程和力的边界条件的应力,记为σ。整个弹性系统的余能表示式为:
,式中左侧为真实应力σij对应的余能;右侧第一项为弹性体的余能,u*(σij)为余能密度,Ω是物体所占的空间;第二项为已知边界位移的余能,B1为给定位移的边界面,ūi为给定的位移分量,pi为面力分量,dB为B1上的面积微元;式中重复下标表示约定求和。这样,最小余能原理可表示为:
U*(σij)≤U*(σ),式中的等号只有当可能应力是真实应力时才成立。最小余能原理实质上等价于弹性体的变形连续条件。它可作为弹性力学直接解法和有限元法计算的重要基础。
参考书目
胡海昌著:《弹性力学的变分原理及其应用》,科学出版社,北京,1981。
,式中左侧为真实应力σij对应的余能;右侧第一项为弹性体的余能,u*(σij)为余能密度,Ω是物体所占的空间;第二项为已知边界位移的余能,B1为给定位移的边界面,ūi为给定的位移分量,pi为面力分量,dB为B1上的面积微元;式中重复下标表示约定求和。这样,最小余能原理可表示为:
U*(σij)≤U*(σ),式中的等号只有当可能应力是真实应力时才成立。最小余能原理实质上等价于弹性体的变形连续条件。它可作为弹性力学直接解法和有限元法计算的重要基础。
参考书目
胡海昌著:《弹性力学的变分原理及其应用》,科学出版社,北京,1981。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条