说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 映射的不动点
1)  fixed points of mapping
映射的不动点
1.
A class of mappings is defined and the characterization of the class of all cofinite languages in terms of fixed points of mappings is give
映射的不动点方面研究了余有限语言的特性。
2)  fixed point of mapping
映射不动点
3)  fixed point theorem of condensing mapping
凝聚映射的不动点定理
1.
Based on the partial order theory, Kuratowski measure of noncompactness, fixed point theorem of condensing mapping and the fixed point index theory in cones, the paper discussed the existence of solutions to the Sturm-Liouville problemsin Banach spaces and the main results are as follows:1.
本文利用半序理论,非紧性测度,凝聚映射的不动点定理及锥上的不动点指数理论,讨论了Banach空间E中Sturm-Liouville边值问题 -(p(t)u′(t))′+q(t)u(t)=f(t,u(t)),t∈[0,1] α_0u(0)-β_0p(0)u′(0)=θ,α_1u(1)+β_1p(1)u′(1)=θ,解的存在性,主要结果有: 一、通过建立新的极大值原理,讨论Banach空间中一般的Sturm-Liouville问题解的存在性,在不假定f(t,u)连续,仅假定f(t,u)满足弱Caratheodory条件,运用上下解单调迭代方法,并结合非紧性测度的性质,研究了Sturm-Liouville边值问题最大解与最小解的存在性。
4)  ON FIXED POINT UNDER CONTRACTION MAPPINGS
收缩映射的不动点
5)  fixed point theorem for monotone mappings
单调映射的不动点原理
6)  fixed point theorem and fixed point index theor
凝聚映射的不动点定理和不动点指数理论
补充资料:可微映射的奇点


可微映射的奇点
singularities of differentiable mappings

(V:二X.(V,二X fV.=X,. ty:二xZ;之y:=x孟;走y:=x盆+x 1 xZ(典型性的判别法见【3]与【4」).H.认知tney的工作(1955),其中证明了这个定理,被认为是可微映射的奇点理论的开始,虽然更早一些就己有了许多个别的结果(函数临界点的Mon祀理论(Mo瞬tb由ry),关于嵌入的奇点的M小itney定理,Jl.C.rlo砚p,,关于奇点和示性类的关系的工作). 可微映射奇点理论的基本概念. 可微映射的芽(罗nn ofdi派此ntiable叮以PPJI咨).令X和Y为光滑流形,P‘X,q‘Y.(以下“光滑”一词用作无穷可微的同义语.)在点p的某一邻域内重合的映射X~Y成一等价类,称为在P点的芽(罗nn at the pointP);映p为q的映射芽的集合记作C田(X,Y)p。·X中保持p不变的光滑的变量变换之芽的群记作Diff‘(X),. 可微映射的奇点理论的一个重要的局部问题是研究群D湃国(X),x Diff。(Y);在c的(X,Y)p,上的自然作用这个问题和许多类似问题的解决通常首先是将函数空间和作用于其上的无穷维群用有限维流形和作用于其上的L记群来逼近.再把这样得到的结果转移到原来的无穷维情况上去. 节丛(jet bund】e).令f,g:X~Y为光滑映射且.f(p)一g(p)二不如果映射f和g在P点的介咖r级数(肠咖r sen留)直到k次项都相同,就定义它们在夕点有k阶切触(contact ofo找七rk).在夕点k阶接触的映射成一等价类称为一个k节(k一et).所有映p为q的映射之k节的集合有自然的光滑流形的结构,并记作尹(X,Y)P,,.有一个适当定义的自然的投射 C田(X,Y),,。~J‘(X,Y)p;· X的保持p点不变且在此点具有k阶接触的光滑变量变换的等价类称为P点处的可逆北节(加说州b】ek一jet).可逆k节成一Lie群口(X),.Lie群扩(X),xL帐(Y),作用在J介(X,Y),,,上而且逼近Dr(X),xD汀的(Y);在C的(X,Y),,;上的作用.令尹(X,Y)={Jk(X,Y),.,对一切(夕,、)eXxY的不相交并}.集合Jk(X,y)有X xy上的光滑丛的自然结构,而其纤维为 J‘(R。,R·)。。=Jk(川,n),结构群则是 L“(R’)。火Lk(R”)。二Lk(爪,n),其中m二山mX,n“dirny.李李和奇卓的刹sing川aritirs and chasesof,ingu-k此j件).乙人(。,n)在Jk(。,儿)上作用的轨道称为一个人步宁(k一s山gu上trity);J人(m,n)在L古(。,n) 之作用下不变的任一子集称为一个丸奇点的类(c1踢ofk一sjll四」adti岛).令S为这样一个类因为尹(。,。)可以与尹(X,Y),、,相等同,就可以在尹(X,y),,、守中定义子集S(X,y),;而不问等同的方法如何·集合S(X,Y)二{S(X,Y沁,。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条