说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> Hilbert型级数不等式
1)  Hilbert type series inequality
Hilbert型级数不等式
1.
With weight coefficient,some generalizations of the Hilbert type series inequality were obtained,and the best conditions for constant factors were given.
利用权系数方法,得到一类Hilbert型级数不等式的普遍形式,并讨论其常数因子为最佳值的条件,所得定理包含了众多文献的结论和若干新结果。
2)  Hilbert's type inequality
Hilbert型不等式
3)  Hilbert-type inequality
Hilbert型不等式
1.
On an extension of a more accurate Hilbert-type inequality;
关于一个较为精密的Hilbert型不等式的推广
2.
A new Hilbert-type inequality and its extensions;
一个新的Hilbert型不等式及其推广
3.
On an Extended Hilbert-type Inequality;
一个推广的Hilbert型不等式
4)  Hardy-Hilbert's double series inequality
Hardy-Hilbert重级数不等式
5)  Hilbert-type integral inequality
Hilbert型积分不等式
1.
A Hilbert-type integral inequality with the kernel of-3-order homogeneous;
一个-3齐次核的Hilbert型积分不等式
2.
New extension of a Hilbert-type integral inequality;
一个Hilbert型积分不等式的新推广
3.
A Hilbert-type integral inequality.;
一个Hilbert型积分不等式
6)  Hardy-Hilbert type inequality
Hardy-Hilbert型不等式
1.
By obtaining an inequality of the weight coefficient,a strengthened Hardy-Hilbert type inequality and its dual form are established.
求出了一个权系数的不等式,建立了一个Hardy-Hilbert型不等式及其对偶式的加强式,并考虑了其等价式的加强形式。
补充资料:Harnack不等式(对偶Harnack不等式)


Harnack不等式(对偶Harnack不等式)
quality (dual Hatnack inequality) Harnack in-

【补注】一直到G的边界的H助nack不等式,见【AZI.l翻..‘不等式(对停H山丸朗k不等不)[ Har.改沁-勺函勺(d切红Hat’I犯‘k如为uaJ卿);rap.姗二p魄HcT助(月加湘oe)] 给出正调和函数的两个值之比u(x)/“(y)的上界和下界估计的一个不等式,由A.Hai,剐火(汇IJ)得到.令u)0是n维E议当d空间的区域G中的一个调和函数;令E。(y)是中心在点y处半径为;的球{x:}x一y!<;}.若闭包万了刃.CG,则对于所有的、“凡(,),o0是常数,亡“(省:,…,氛)是任一。维实向量,叉‘G.不等式(2)中的常数M仅依赖于又,A,算子L的低阶项系数的某些范数以及G的边界与g的边界之间的距离. fy,1, …粤馨 对于形如u:+Lu“0的一致抛物型方程(算子L的系数可以依赖于t)的非负解:(x,t),类似于1压ar-恤比不等式的不等式也成立.在此情形下,对于顶点在点(y,动处开口向下的抛物面(图a) {(x,t川x一,I’<。,(T一t),:一v,簇t簇:}的内部的点(x,t),只能有单边的不等式(fs」): u(x,r)(M妇(y,T),这里,M依赖于y,T,又,A,料,,,算子L的低阶项系数的某些范数,以及抛物面的边界与在其中“(义,t))0的区域的边界之间的距离.例如,如果在柱形区域 Q二Gx(a,b],中“〕O,此外,歹CG,并且如果刁G与刁g之间的距离不小于d(>0),而d充分小,那么在gx(a一矛,bJ中不等式 。(、.t、___/,、一。1,.:一:.八 1。,二之二止,二止匕成几11止二一一丈‘.+一+11 u气y,T)\下一I“/成立(协J).特别地,如果在Q中u)0(图b),且如果对于位于Q中的紧集Q,和QZ有 占“们山n(t一:)>0, (义,t)‘Q- (y.下)〔QZ那么有 n知Lxu(x,t)簇M nunu(x,t), (x,‘)‘QZ(x,‘)‘Q-其中M“M(占,Q,QI,QZ,L).函数 ·、·,‘卜exn(‘睿,、‘一暮“:)—对于任意的k,,…,气,它是热方程u,一△拟“0的解—表明在抛物型情形下双边估计的不可能性,
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条