1) periodic tridiagonal matrices
周期三对角矩阵
1.
Strictly diagonally dominant tridiagonal and periodic tridiagonal matrices play vital roles in the theory and practical applications especially,it is very important for studying the boundary value problems by finite difference methods,interpolation by cubic splines,three-term difference equations and so on.
严格对角占优三对角矩阵及周期三对角矩阵在理论和实际应用中起着很重要的作用,特别是在利用有限差分方法、三次样条插值、三次差分方程等方法研究边界值问题中具有重要作用。
2) tridiagonal period matrices
周期三对角矩阵
1.
A class inverse spectiral problem for non-negative irreducible tridiagonal period matrices is proposed.
提出一类非负不可约周期三对角矩阵的逆谱问题 ,讨论了问题的可解性 ,并给出了问题有解的充要条件及算例 。
3) period symmetric tridiagonal matrix
周期对称三对角矩阵
1.
On the period symmetric tridiagonal matrix inverse problem of generalized eigenvalue;
关于周期对称三对角矩阵的广义特征值反问题
4) periodic block-tridiagonal matrix
周期块状三对角矩阵
1.
The three-parametric method is developed to solve large scale linear algebraic equations with periodic block-tridiagonal matrix.
建立了求解系数矩阵为周期块状三对角矩阵的大型线性代数方程组的三参数组方法。
2.
The general elliptic partial differential equation with periodic boundary conditions is as followsSuppose that there is a rectangular mesh, from Evans discretization method, the following difference scheme is obtainedIt can be written in matrix notation as Au = s, where A is periodic block-tridiagonal matrix.
具有周期边界条件的椭圆型偏微分方程为 通过建立矩形网格剖分,按照Evans的离散化方法,可以得到下面的差分格式 d_(ij)u_(ij)-l_(ij)u_(i-1,j)-r_(ij)u_(i+1,j)-b_(ij)u_(i,j-1)-t_(ij)u_(i,j+1)=S_(ij)写成矩阵乘法形式Au=s,其中A是周期块状三对角矩阵。
5) block period tridiagonal matrix
分块周期三对角矩阵
1.
So we get the fast algorithm for inverting a block period tridiagonal matrix using the given algorithm.
给出了分块三对角矩阵逆矩阵的快速算法,并利用所给算法得到了求分块周期三对角矩阵逆矩阵的快速算法。
6) adding element tri-diagonal period Matrices
加元周期三对角矩阵
补充资料:块三对角矩阵
分子式:
CAS号:
性质:一种特定形式的分块矩阵(分块矩阵的元素均为子矩阵),矩阵的主对角线及其相邻对角线上的子矩阵为方阵,其余子矩阵为零矩阵。块三对角矩阵的运算与三对角矩阵类似。
CAS号:
性质:一种特定形式的分块矩阵(分块矩阵的元素均为子矩阵),矩阵的主对角线及其相邻对角线上的子矩阵为方阵,其余子矩阵为零矩阵。块三对角矩阵的运算与三对角矩阵类似。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条