1) asymptotic fraction
渐近分数
1.
Recursion solution on 2~(1/2) continued fraction and high precision solution on asymptotic fraction and high precision solution on asymptotic fraction are given to accomplish the Turbo C programme design on Pell equations.
本文给出n~(1/2)的次分数的递推算法与其渐近分数的高精度算法,完成求解Pell方程的Turbo C程序设计。
2) convergent
[英][kən'və:dʒənt] [美][kən'vɝdʒənt]
渐近分数
1.
This paper begins with continued fraction method of solving binary simple indefinite equations,and uses the basic relationship of convergent Pn/Qn of continued fraction 〈a 0,a1,a 2,a 3,…,an〉 and the necessary and sufficient conditions of the integer solution to indefinite equations.
从连分数求解二元一次不定方程展开讨论,结合连分数的基本性质,运用连分数〈a0,a1,a2,a3,…,an〉的渐近分数Pn/Qn的基本关系和不定方程整数解的充要条件,得出连分数求解不定方程的公式,并推广到求解多元一次不定方程。
3) asymptotic distribution function
渐近分布函数
4) intermediate fraction
中间渐近分数
5) asymptotic optimum quantile
渐近最优分位数
6) convergent of continued-fraction
连分数的渐近分数
补充资料:连分数的渐近分数
连分数的渐近分数
convergent of a continued fraction
连分数的渐近分数l阴ve吧e时ofa阴‘毗d五,比.;n侧卫xp口.坦”八卯6‘] 见连分数(con tinued fraction).
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条