1) the introduction of two-variable Hermite polynomials
双变数厄密多项式
1.
The analysis naturally leads to the introduction of two-variable Hermite polynomials,which is sharply different with the usual single-variable Hermite polynomials.
此分析自然导致双变数厄密多项式的引入,它截然不同于单变数厄密多项式。
2) hermite polynomials
厄密多项式
1.
Results Obtained some linear combination identities involving Hermite polynomials and parabolic cylinder function.
目的研究厄密多项式与抛物线柱函数线性组合的性质。
3) modified Hermite Polynomial
修正厄密特多项式
4) two-variable Hermite polynomials
双模厄米特多项式
1.
Some other operator formulas about two-variable Hermite polynomials are also derived.
用文献[1]中提出的有序算符内的积分技术,简洁地导出了[量子光学学报,2002,8(1):8-12]一文中给出的有用的光场算符公式,并引入了双模厄米特多项式来表达这些公式。
5) Hermite polynomial
厄米多项式
1.
A projection pursuit regression model for synthetic earthquake prediction based on particle swarm optimization and Hermite polynomial fitting
基于粒子群优化算法与厄米多项式构建地震综合预测投影寻踪回归模型
2.
Discussing on the recurrence relation of the Hermite polynomial also
也谈厄米多项式的递推关系
3.
A method to compute the zeroes of the high-degree Legendre,Laguerre and Hermite polynomials,which are the nodes of Gauss-Legendre,Gauss-Laguerre and Gauss-Hermite Quadrature,respectively,is studied,and a very efficient algorithm scan-iteration method(SIM) is given.
研究了高次勒让德、拉盖尔和厄米多项式的零点,即高斯-勒让德、高斯-拉盖尔、高斯-厄米积分的节点的计算方法,给出了一种有效的高精度数值算法——搜索迭代方法(scan-iteration method,SIM)。
6) Hermite polynomials
厄尔米特多项式
补充资料:多项式乘多项式法则
Image:1173836820929048.jpg
先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。