1) weakly almost periodic
弱概周期
1.
In this paper, weakly almost periodic of C-semigroup is studied, Let ()uis almost-orbit of a bounded C-semigroup on a Banach space X, assuming that ()u has weakly relatively compact range in X, We obtain that ()Cu is weakly almost periodic.
假设在有界C-半群的概轨道()u的轨迹在Banach空间X中是弱紧的条件下,研究了C-半群的弱概周期性,得到了()Cu是弱概周期的;特别在X是自反的Banach空间的情况下,不用其假设条件也能获得同样的结论;相应获得了有界C-半群点的弱概周期。
2) weakly asymptotic almost periodicities
弱渐近概周期性
3) weakly periodic ring
弱周期环
4) almost periodic solution
概周期解
1.
Uniqueness of almost periodic solution of an epidemic SIS model with variable coefficient;
一类非自治传染病SIS模型概周期解存在惟一性
2.
Global asymptotic stability of almost periodic solutions for a predator-prey system;
一类捕食和被捕食系统的概周期解的全局渐进稳定性
3.
Existence and uniqueness of almost periodic solutions to the retarded Liénard equation;
广义时滞Liénard型方程概周期解的存在唯一性
5) almost periodic
概周期
1.
The existence of almost periodic solution and stability for functional delay-differential equations with infinite delays;
具有无穷时滞泛函微分方程概周期解的存在性与稳定性
2.
The existence and asympeo tic behavior of almost periodic solution for the logistic equations with infinite delay;
具有无穷时滞的Logistic方程的正概周期解的存在性与渐近性
3.
By using theories of almost type functions,the theorem about relation of asymptotically periodic functions and asymptotically periodic sequences,as well as the equipollence of vector-valued asymptotically periodic functions and almost periodic functions on R+ are obtained.
利用概周期型函数的理论,得出了渐近周期函数和渐近周期序列二者的关系定理,以及R+上的向量值渐近周期函数与概周期函数的等价关系。
6) almost period
概周期
1.
The Galerkin s technique for periodic solutions into almost periodic solutions was developed in this paper,and was applied to the almost phenomenon in a class of nonlinear systems.
本文将概周期性Galerkin方法应用到一类非线性系统中的概周期现象的研究,针对电力系统运行状态的非线性系统及其控制系统,证明了电力系统中广泛存在的一种振动过程的机理是概周期的。
2.
By Laplace transformation,the existence of the only almost periodic solution of the linear delay system is proven when the real part of all roots of the characteristic equation is not zero.
通过Laplace变换,证明了线性时滞系统当其特征方程的所有根的实部不为零时,存在唯一概周期解。
3.
This paper proves the propositions of relations among period,quasi-period,and almost period by the definitions of them.
从周期 ,拟周期和概周期的定义出发 ,严格地证明三概念之间的关系命题 。
补充资料:概周期微分方程
其右端函数对自变量是概周期函数的微分方程;即在方程
(1)中,??(x,t)是t的概周期函数。这里x是n维向量,??(x,t)是n维向量函数。概周期微分方程的发展历史不长,但由于它具有实际背景(如天体力学和非线性振动的问题)而显示出生命力。特别是,1945年,A.H.柯尔莫哥洛夫利用无理性条件,指出哈密顿系统具有拟周期解。1963年,Β.И.阿诺尔德又给出严格证明,由此证明了太阳系不稳定的概率为零,解决了平面限制性三体问题的稳定性问题,从而使P.-S.拉普拉斯提出的已历时二百年的太阳系稳定性问题有了重大的突破。这样,概周期微分方程就更显出它的重要性。
对概周期方程(也称概周期系统)(1),主要是讨论其概周期解的存在性和稳定性。线性微分方程是微分方程论的基础,因此概周期线性微分方程的结构以及概周期解的摄动理论也是概周期系统的重要课题。
线性系统 法瓦尔性质 对概周期线性系统, (2)式中A(t)是n×n概周期方阵;??(t)是n维概周期向量函数,定义A(t)的外壳为
。 法瓦尔提出这样的条件:对于(2)的齐次外壳方程系 (3)的任一非显易的有界解xB(t),总满足关系式, 称这条件为法瓦尔性质。这性质是从常系数线性系统或周期性线性系统总结出来的。法瓦尔指出,在这个条件下,(2)的有界解的存在性含有概周期解的存在性。
弗洛奎特理论 周期线性系统可以通过正则、线性、周期的变换化为常系数线性系统。通常称这种关系为弗洛奎特理论。人们希望这种性质可以推广到概周期线性系统或拟周期线性系统。G.R.塞尔指出,弗洛奎特理论不能推广到概周期线性系统(1974)。
指数型二分性 从第一近似观点出发,在原点附近的非线性系统
(4)(式中A的特征根的实部不为零),与它的线性部分 有相同的拓扑结构,原因在于后者具有指数型二分性。对于线性部分为变系数的非线性系统
, (5)当它的线性部分
(6)是概周期系统且其特征指数不为零时,R.J.萨克和塞尔研究了A(t)和其外壳H(A(t))的性质,得到(6)具有指数二分性的条件(1974、1976)。
非线性系统 对概周期系统 (1)的概周期解的求解,尚无统一的办法。Z.奥皮尔举出存在这样的系统(1),它的解均有界,但没有概周期解(1961)。A.M.芬克和P.O.弗雷德里克桑构造了一个概周期系统,其每个解都是毕竟有界,但没有概周期解。由此可见,除了一切解有界以外,还必需附加一些条件,才能得到概周期解。在这方面G.塞费特、塞尔、米尔、J.卡托等人都提出了不同的附加条件。 类似于法瓦尔的考虑,L.阿梅里奥对概周期系统(1)提出分离性的概念,而探讨概周期解的存在性。设K是(1)的定义中的致密集,对任一g(x,t)∈h(??(x,t)),当x(t),y(t)均为
(7)的解,且 x(t),y(t)均在K上,且常存在λ(g)>0,使‖x(t)-y(t)‖≥λ(g), 则说(1)在 K上满足分离性条件。阿梅里奥证明了,这种情况下,(1)具有概周期的解。
讨论概周期微分方程要涉及到哈密顿系统以及三体问题。
参考书目
G.E.O.Giacaglia,Perturbation Methods in Nonlinear System,Springer-Verlag,New York,1972.
A.M.Fink,Almost Periodic Differential Equation,Lecture Notes in Math.,377,1974.
A.S.Besicovitch,Almost Periodic Functions,Cambridge Univ.Press,Cambridge,1932.
T.Yoshizawa,Stability Theory and the Existence of Periodic Solution and Almost Periodic Solution,Springer-Verlag,New York,1975.
W.A.Coppel,Dichotomies in Stability Theory,Lec-ture Notes in Math.,6201,1978.
(1)中,??(x,t)是t的概周期函数。这里x是n维向量,??(x,t)是n维向量函数。概周期微分方程的发展历史不长,但由于它具有实际背景(如天体力学和非线性振动的问题)而显示出生命力。特别是,1945年,A.H.柯尔莫哥洛夫利用无理性条件,指出哈密顿系统具有拟周期解。1963年,Β.И.阿诺尔德又给出严格证明,由此证明了太阳系不稳定的概率为零,解决了平面限制性三体问题的稳定性问题,从而使P.-S.拉普拉斯提出的已历时二百年的太阳系稳定性问题有了重大的突破。这样,概周期微分方程就更显出它的重要性。
对概周期方程(也称概周期系统)(1),主要是讨论其概周期解的存在性和稳定性。线性微分方程是微分方程论的基础,因此概周期线性微分方程的结构以及概周期解的摄动理论也是概周期系统的重要课题。
线性系统 法瓦尔性质 对概周期线性系统, (2)式中A(t)是n×n概周期方阵;??(t)是n维概周期向量函数,定义A(t)的外壳为
。 法瓦尔提出这样的条件:对于(2)的齐次外壳方程系 (3)的任一非显易的有界解xB(t),总满足关系式, 称这条件为法瓦尔性质。这性质是从常系数线性系统或周期性线性系统总结出来的。法瓦尔指出,在这个条件下,(2)的有界解的存在性含有概周期解的存在性。
弗洛奎特理论 周期线性系统可以通过正则、线性、周期的变换化为常系数线性系统。通常称这种关系为弗洛奎特理论。人们希望这种性质可以推广到概周期线性系统或拟周期线性系统。G.R.塞尔指出,弗洛奎特理论不能推广到概周期线性系统(1974)。
指数型二分性 从第一近似观点出发,在原点附近的非线性系统
(4)(式中A的特征根的实部不为零),与它的线性部分 有相同的拓扑结构,原因在于后者具有指数型二分性。对于线性部分为变系数的非线性系统
, (5)当它的线性部分
(6)是概周期系统且其特征指数不为零时,R.J.萨克和塞尔研究了A(t)和其外壳H(A(t))的性质,得到(6)具有指数二分性的条件(1974、1976)。
非线性系统 对概周期系统 (1)的概周期解的求解,尚无统一的办法。Z.奥皮尔举出存在这样的系统(1),它的解均有界,但没有概周期解(1961)。A.M.芬克和P.O.弗雷德里克桑构造了一个概周期系统,其每个解都是毕竟有界,但没有概周期解。由此可见,除了一切解有界以外,还必需附加一些条件,才能得到概周期解。在这方面G.塞费特、塞尔、米尔、J.卡托等人都提出了不同的附加条件。 类似于法瓦尔的考虑,L.阿梅里奥对概周期系统(1)提出分离性的概念,而探讨概周期解的存在性。设K是(1)的定义中的致密集,对任一g(x,t)∈h(??(x,t)),当x(t),y(t)均为
(7)的解,且 x(t),y(t)均在K上,且常存在λ(g)>0,使‖x(t)-y(t)‖≥λ(g), 则说(1)在 K上满足分离性条件。阿梅里奥证明了,这种情况下,(1)具有概周期的解。
讨论概周期微分方程要涉及到哈密顿系统以及三体问题。
参考书目
G.E.O.Giacaglia,Perturbation Methods in Nonlinear System,Springer-Verlag,New York,1972.
A.M.Fink,Almost Periodic Differential Equation,Lecture Notes in Math.,377,1974.
A.S.Besicovitch,Almost Periodic Functions,Cambridge Univ.Press,Cambridge,1932.
T.Yoshizawa,Stability Theory and the Existence of Periodic Solution and Almost Periodic Solution,Springer-Verlag,New York,1975.
W.A.Coppel,Dichotomies in Stability Theory,Lec-ture Notes in Math.,6201,1978.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条