1) generalized Menger metric embedding theory
广义Menger度量嵌入定理
1.
By using the generalized Menger metric embedding theory, we extended the definition of the generalized metric addition which two groups of two dead synclastic simplexes, the definition is introduced of the generalized weighted metric addition which finite groups of two dead synclastic simplexes.
利用广义Menger度量嵌入定理,推广了关于两组两个完全同向n维单形"广义度量加"的概念,提出了关于有限组两个完全同向n维单形的"广义加权度量加"的概念,并运用距离几何理论同矩阵不等式结合的方法,证明了几个涉及"广义加权度量加"的几何不等式,它们进一步推广了杨路和张景中关于Alexander猜想的结果,这些结论蕴含近期诸多文献的主要结果。
2) Menger's theorem
Menger定理
3) Embedding theorem
嵌入定理
1.
Orbifold embedding theorem;
Orbifold嵌入定理
2.
Ideals and embedding theorem of co-residuated lattices;
余剩余格的理想和嵌入定理
3.
A proof of the embedding theorems in the spaces of W_0~(1,N)(Ω) and W~(1,p)(R~N)
关于空间W_0~(1,N)(Ω)与W~(1,p)(R~N)上嵌入定理的一种证明
4) imbedding theorems
嵌入定理
1.
In this paper, we first introduce a new kind of A~(λ_3)_r (λ_1, λ_2,Ω) two-weight, then we obtain some two-weight integral inequalities which are generalizations of the imbedding theorems, Poincare inequality, Caccioppoli-type estimate and weak reverse Holder inequality for differential forms when α= 1.
在本文中,我们首先引入了一种新的A_τ~(λ_3)(λ_1,λ_2,Ω)双权,然后得到了当α=1时,微分形式的局部双权的嵌入定理,Poincare不等式,Caccioppoli型估计和弱逆H(?)lder不等式。
2.
This paper considers the imbedding theorems of Sobolev space in one dimensional.
考虑一维区域上的Sobolev空间的嵌入问题,应用牛顿-莱布尼茨公式、柯西不等式、H觟lder不等式给出了一系列嵌入定理的直接证明。
5) Imbedding theorem
嵌入定理
1.
We establish the estimates of positive solutions to a strongly coupled ecological systems in L∞(0,T;H1(Ω)) by energy methods and using Sobolev imbedding theorem and interpolation.
运用能量方法,通过采用嵌入定理、内插不等式建立了非线性强耦合生态系统正解的L(∞0,T;H(1Ω))估计。
2.
The commonly Sobolev imbedding theorem is developed to domain of special regularity.
将常用的Sobolev嵌入定理推广到具有特殊正则性的区域上去,并证明了强局部Lipschitz性质和一致Cm-正则性区域下的嵌入定理。
3.
In a class of Besov-type normed linear spaces of multivariate periodic functions with a given mixed modulous of smoothness some imbedding theorem and trace theorems are established.
在多元周期的Lp(1<p<∞)空间内,对一类具有一定混合光滑模的、被赋以Besov型范数的线性子空间,利用Nikolskii-Lizorkin型的函数表现定理证明了嵌入定理、迹定理及其逆定理(延拓定理)。
6) The imbedding theorem
嵌入定理
1.
An existence theorem of weak solution to a class of biharmonic equation was proved by the sub-super-solution method,the imbedding theorem and the Leray-schauder fixed point theorem.
利用上下解方法、嵌入定理和Leray-Schauder不动点定理证明了一类双调和方程弱解的存在性定理。
补充资料:Урысон度量化定理
Урысон度量化定理
Urysohn metrization theorem
yl》‘,eo:度量化定理【Ury即加l皿tr血,ti.l血~;yPocoua MeTPo3auNoHHa“Te叩eMal l)紧或可数紧Hausdod叮空I’N(Hausdorff space)可度量化,当且仅当它有一个可数基. 2)有可数基的拓扑空间(topo10gical sPace)可度量化,当且仅当它是正规的(见正规空间(norr几11sP改e)),或者(由A .H .T瓜oHoB加上的)当且仅当它是正91jl的.n.C.A二eKca“八p0B撰
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条