1) linear hybrid automaton
线性混合自动机
2) hybrid automata
混合自动机
1.
Trains and controllers are modeled as hybrid automata.
建立火车和控制器的混合自动机模型,用时态逻辑ICTL描述铁路系统的性质规范,使用模型检查技术自动验证铁路系统,并且对铁路系统的一些参数进行分析。
2.
Based on the discussion of hybrid automata theory,this paper provides a new automatic code generation technique from hybrid automata using xml description,and then we use an example to demonstrate how to model the hybrid automata and transform the model into executable J2me source code.
在概述混合自动机理论的基础上,给出了它的一种基于xml语言的形式描述,并利用这种描述规范提出了一种基于混合自动机的模型驱动的开发方式,结合一个具体的应用实例进行开发,给出了根据模型描述文件生成可以编译运行的J2ME代码的原理以及关键步骤,以及需要注意的问题。
3.
This paper focuses on the modeling methods, including Equivalent Discrete Event (EDE) model, hybrid automata, petri nets, duration calculi and its extension.
在概述混合系统概念、特点、发展近况以及混合系统框架的基础上,介绍了混合系统研究中的建模问题,重点介绍了等价离散事件模型、混合自动机、Petri网、时段演算及其扩展等建模方法,最后介绍了混合系统研究中的一些重要成果以及一些仿真方法。
3) automixer
自动混合机
4) stochastic hybrid automaton
随机混合自动机
1.
If assumed that models after faults occurrence are known,the system subject to thesefaults can be modeled with a stochastic hybrid automaton.
在发生故障后的系统模型是已知的假定条件下,使用随机混合自动机对系统建模,并利用基于粒子滤波的混合估计算法估计出混合状态,从而完成故障诊断。
5) linear automata
线性自动机
1.
The paperdiscuss the linear automata over field GF (p).
在域上GF(P)和线性自动机文献 [1][2 ]给出较全面的研究。
6) automatic mixed feed machine
自动混合饲料机
补充资料:ω-有限自动机
ω-有限自动机
ω-finite state automata
1094·。一youx一anz}dongJ-。.有限自动机(。一rinite state automata)一种在无限串上运行的有限状态自动机,是一种。一语言的识别模型。主要研究。一的各种识别方式以及在通常的五种识别条件下,识别的。一语言族之间的关系。特别,通过其中一种条件(即所谓CS)下识别的。一语言定义了QJ一正则语言,这是一种使。一自动机识别能力最强的识别方式。。一自动机理论的核心课题之一,是对。一正则语言的研究,包括对。一正则语言的描述及其性质的研究。 。一自动机最早在文献中出现的是J.R.Buchi(1960)利用工作在无限序列上的有限自动机获得关于受限二阶逻辑理论的一个判定过程。自此以后一些研究。一自动机的各种形式体系的论文陆续出现,其中J.R.Buchi,(1965,1969),C.C.Elgot和M.0.Rabin(1966,1%9)等人的论文均受到这些模型与二阶逻辑理论之间的密切关心的启发,因此重点放在判定问题。D.E.Muller(1963)利用确定的。一有限自动机研究异步开关理论中的某些问题。R.MeNatlgllton(1966)首先发展了被。一有限自动机识别的。一语言的理论,即所谓的。一正则语言的理论。 。一有限自动机研究的内容包括。一有限自动机的定义,五种识别条件,。一正则语言的概念,对断正则语言的描述以及与五种识别模型相应的五个。-语言族之间的关系。 。.申与。一语言设乏是有限字母表,由乞中的字母组成的无限序列,称为艺上的沙串。用2表示艺上的所有。一串的集合。2的任意子集称为乏上的。一语言。 沙有限自动机一个五元组M=(K,乞,占,q0,F),其中K为状态有限集,艺为输人字母表,占:Kx艺~ZK,q。(任K)为初始状态,F(里ZK)为指定状态集族。如果占:Kx艺~K,则M是确定的。一有限自动机。 设。=ala2’’·a,…,a,任乏,i=1,2,一。状态序列二={Q‘},称为M在。上的一个运行,当且仅当q,任创q、一,,a*),i=1,2,…。一个运行确定一个映射fr:N~K,井(i)=g,一l,i=1,2,…。令I(r)={,〔兀Icard(f厂1(。)))。},o(二)=}、〔K If厂‘(g)半必}。 。一有限自动机的识别条件包括Cl,CZ,C3,C4与CS五个条件。。一有限自动机M在C,条件下识别。一串。,当且仅当存在M在。上的一个运行r,使满足C,i=1,2,3,4,5。其中 Cl:存在H任F,使I(二)nH共曰 CZ:存在H任F,使I(:)二H c3:存在H任F,使O(r)nH护曰 C4:存在H任F,使O(:)里H CS:存在H任F,使I(:)=H 设M=(K,乞,a,qo,F)是一。一有限自动机,称集合 界(M)=}。任2}存在M在。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条