2) Butterworth transfer function
Butterworth传递函数
1.
With the increase of the order of Butterworth transfer function,its overshoot is increased and its step response quality is reduced.
Butterworth传递函数随着阶数增大,超调量增大,单位阶跃响应品质变差,同时也影响了滤波器的性能。
2.
The paper introduced an optimum synthesis technology of second order state variable RC active filter based on Butterworth transfer function.
介绍了基于Butterworth传递函数的二阶状态变量RC有源滤波器的优化综合技术,进而给出了一种由单片机参与的能自动跟踪输入信号频率、选择合适滤波器截止频率的程控滤波系统实例。
3) Butterworth Standard Transfer function
Butterworth标准传递函数
1.
Design of State Feedback System Based on Butterworth Standard Transfer function;
基于Butterworth标准传递函数设计状态反馈系统
4) improved Butterworth transfer function
改进型Butterworth传递函数
1.
Based on improved Butterworth transfer function,a design method for active high order low-pass electrical filter is put forward in this paper.
基于改进型Butterworth传递函数,提出了一种设计高阶低通滤波电路的方法。
5) new high order Butterworth optimal transfer function
新型高阶Butterworth最优传递函数
6) butterworth wavelets
Butterworth小波
1.
In this paper,a general concept for bi-orthogonal wavelet bases in L~2(Z)is introduced and an easily checked sufficient condition is given,by which the Butter- worth wavelets are derived;then a family of bi-orthogonal wavelets are constructed,which have all properties of the Butterworth wavelets;Moreover,our wavelets h.
联系Butterworth滤波器的双正交小波称为Butterworth小波,它们具有很好的性质:包括对称性,插值性及消失矩。
2.
In this paper, a general concept for biorthogonal wavelet bases in l~2(Z) is introduced and an easily checked sufficient condition is given, by which the Butterworth wavelets are derived; then a family of biorthogonal wavelets are constructed, which have all properties of the Butterworth wavelets; Moreover, our wavel.
Butterworth小波对应于Butterworth滤波列,它们具有良好的性质(对称性、插值性和消失矩)。
补充资料:高斯函数模拟斯莱特函数
尽管斯莱特函数作为基函数在原子和分子的自洽场(SCF)计算中表现良好,但在较大分子的SCF计算中,多中心双电子积分计算极为复杂和耗时。使用高斯函数(GTO)则可使计算大大简化,但高斯函数远不如斯莱特函数(STO)更接近原子轨道的真实图象。为了兼具两者之优点,避两者之短,考虑到高斯函数是完备函数集合,可将STO向GTO展开:
式中X(ζS,A,nS,l,m)定义为在核A上,轨道指数为ζS,量子数为nS、l、m 的STO;g是GTO:
其变量与STO有相似的定义;Ngi是归一化常数:
rA是空间点相对于核A的距离;ci是组合系数;K是用以模拟STO的GTO个数(理论上,K→∞,但实践证明K只要取几个,便有很好的精确度)。
ci和ζ在固定K值下, 通过对原子或分子的 SCF能量计算加以优化。先优化出 ζS=1 时固定K值的ci和(i=1,2,...,K),然后利用标度关系式便可得出ζS的STO展开式中每一个GTO的轨道指数,而且,ci不依赖于ζS,因而ζS=1时的展开系数就是具有任意ζS的STO的展开系数。对不同展开长度下的展开系数和 GTO轨道指数已有表可查。
式中X(ζS,A,nS,l,m)定义为在核A上,轨道指数为ζS,量子数为nS、l、m 的STO;g是GTO:
其变量与STO有相似的定义;Ngi是归一化常数:
rA是空间点相对于核A的距离;ci是组合系数;K是用以模拟STO的GTO个数(理论上,K→∞,但实践证明K只要取几个,便有很好的精确度)。
ci和ζ在固定K值下, 通过对原子或分子的 SCF能量计算加以优化。先优化出 ζS=1 时固定K值的ci和(i=1,2,...,K),然后利用标度关系式便可得出ζS的STO展开式中每一个GTO的轨道指数,而且,ci不依赖于ζS,因而ζS=1时的展开系数就是具有任意ζS的STO的展开系数。对不同展开长度下的展开系数和 GTO轨道指数已有表可查。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条