1) Multi-spaces Mapping
多重空间映射
2) multimap
多重映射
3) space mapping
空间映射
1.
Structural optimization by combination of space mapping response surface methodology;
空间映射与响应面法相结合的结构优化
2.
Modified optimization algorithm combining space mapping and response surface methodology;
空间映射与响应面法相结合的改进优化算法
3.
Surrogate models in space mapping are used to determine response surfaces with their associated gradients, and then a fine model is applied to correct the design point for the next .
阐述了响应面近似模型和空间映射技术用于快速模面设计优化的基本原理 为避免数值噪声干扰和求解隐函数敏度 ,提出通过多项式响应面方法构造真实目标和约束的逼近曲面 ,以光滑响应进行全局最优 ;并利用空间映射技术的代理模型确定新的响应面及其梯度 ,经精细模型修正优化方向和设计子域 ,使计算成本降低 算法结合有限元模拟实施 ,通过对金钣拉延成形和回弹补偿的分析证明 ,该算法具有很高的效率和鲁棒性 ,适用于模面设计优
4) Mapping space
映射空间
5) self-mapping space
自映射空间
1.
This paper presented a self-mapping space(SMS) model for knowledge representation and uncertainty handling.
通过自映射空间模型作为知识表达和处理不确定性的方法以达到改进目前方法的目的。
补充资料:多重线性映射
多重线性映射
multilinear mapping
多重线性映射【浏国目比址叮.n那嗯;uO瓜皿业触Oe 0m6-p姗服“],n重线性映射(n .linearIT以pp吨),多重线性算子(mult正川乏r oP已rator) 从带有么元的交换结合环A上的单式模(unita巧】议对ule)E,的直积fl几IE‘到某个A模F内的关于每个自变量均为线性的映射f,亦即它满足条件 f(xl,二‘,x卜1,ay+bz,x:十1,…,x。)二 =af(xl,…,x卜、,y,x:十,,…,x。)+bf(x,,…,x卜:,z, x.+,,’.‘,X。)(a,b‘A:夕,之任E,,i=l,…,n).在n=2(对应地,。=3)的情况下,称为双线性映射(bilin已lr打么Pping)(对应地,三线性映射).每个多重线性映射 f:nE,~F i二I定义从张量积因几,E‘到F内的唯一线性映射了,使得 ‘Z(x:。,二⑧x。)=f(x:,…,x。),x‘6E,,这里对应f!~了是多重线性映射fl爪,E‘~F的集合到所有线性映射⑧凡.E‘~F的集合内的一一映射.多重线性映射fl几,E,~F自然地组成一个A模. 对称群(s班nr沈川c grouP)S。作用在所有。重线性映射E”~F组成的A模L。(E,F)上: (sf)(xl,…,x。)=f(x:(:),…,x,(。)),这里s任s。,f任L。(E,F),x‘任E.多重线性映射f称为对称的(s抑叱tric),假如对所有:任S。,sf=f;称为斜对称的(skew .5扣扣r川c),假如可=。(s)f,这里按置换s的正负号,。(s)二士1.一个多重线性映射称为变符号的(slgn一铭乃吐堪)(或交错的(日忱mati飞)),如果当对某个i有,xi二x,时,f(x.,…,x。)一0.任何的交错多重线性映射是斜对称的,而如果F中方程Zy=0有唯一解夕=0,则逆命题亦真.对称多重线性映射组成L。(E,F)内一个子模,它自然地同构于线性映射的模L(夕E,F),这里,夕E是E的第n重对称幂(见对称代数(s皿峨沥ca唇腼)).交错多重线性映射组成一个子模,它自然地同构于L(尸E,F),这里A”E是模E的第n重外幂(见外代数(exteriora唇bm)).多重线性映射:、厂一艺:。、.sf称为由f确定的对珍侈孝重线性映射(syn哑减血曰功间垃i众治rn份PP止嗯),而多重线佳映射丢沂艺:。:,。(s)sf称为由f确定的料对移侈多重线性映射(skew一s丫nr叱tr汾沮mul创咏迸mapp吨).对称化(对应地,斜对称化)多重线性映射均为对称的(对应地,交错的),并且,如果在F中对每个c‘F,方程川y=c有唯一解,则逆命题亦真.使任意交错多重线性映射成为斜对称化的一个充分条件是E为自由模(n忱Inodule).参见多孟线性型(mul山hearfonll).A .Jl .01忍口,峨撰陈公宁译
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条