1) polynomial hierarchy
多项式谱
1.
It is proved that its subclasses of fixed number of quantifiers is in correspondant polynomial hierarchy.
并且利用这一结果证明了固定量词长度的子类属于相应计算复杂性的多项式谱 。
2) pseudo polynomial model
伪谱多项式模型
1.
An adaptive sectional method was presented based on the pseudo polynomial model and Padé(rational) model.
提出了一种新型的自适应分段方法,利用高精度的伪谱多项式模型及Padé有理模型作为基础,综合采样点校验准确和模型间校验快速的优点,自适应地对分析区域进行分段逼近。
3) operator polynomial spectrum
算子多项式的谱
4) multiples spectroscopic term
多重谱项
1.
The multiples spectroscopic term of equivalent electrons LS coupling atomic states of multiple non-full l subshells;
多个未满l次壳层等效电子LS耦合原子态的多重谱项
5) Polynomial-time Hierarchy
多项式时间谱系PH
6) polynomials/chromatic polynomials
多项式/色多项式
补充资料:多项式谱系
多项式谱系
polynomial hierarchy
dUoxiQngshi Puxi多项式谱系(polynomi目hie州”℃hy)递归论中克林算术谱系的多项式变形,很多似乎不在NP类中的计算问题属于多项式谱系的某一层次。多项式谱系的基本思想是R.K田甲于1972年提出的,A.Me界r和L.Stockmeyer在1973年给出了多项式谱系的严格形式化定义。 基于多项式时间图灵归约和多项式时间非确定图灵归约的概念,可建立P和NP类关于任何语言L的相对化定义,它们分别记为P(L)和NP(L),有 P(L)二{厂互艺‘}I.’簇弘} NP(L)={L’g刃’1L’簇岁L{这种对P和NP类关于语言的相对化概念,可自然地推广到任何语言类留上: P(昭)二UP(L),NP(节)二U NP(L) L任CL任嘴基于这种定义,可将P和NP视为语言类上的一种算子,且有蜒二P(留)二NP(留),P(P)=P,NP(P)=NP,从自语言类P开始,将算子NP重复地作用在其上,便产生一个语言类的无穷递增序列:P,Np,Np(NP),NP(Nl〕(Nl〕)),…它们依次记为写,写,成,写,…,也即 写二P,聪1=N’P(军),k)o 另外,还可定义两类与写相关的复杂性类可和乙f: 可=c。一军={L里乏‘】兀〔雾} 乙居=尸,△乐1=尸(写),k)0这三种复杂性类有下述基本关系: 军里军n可,军U可里。孰由此可见 昌军一昌可一昌△f由军,可及叮(k)0)所描述的层次结构记为PH,并称PH为多项式谱系。 多项式谱系也可如同算术谱系那样,用交替量词的形式来表示。两者之间的区别仅仅是存在量词」y代之以多项式存在量词日与;全称量词Vy代之以多项式规模全称量词V与;递归集(语言)代之以多项式时间可计算语言。这就是C户Wrath司1定理:对于所有k)O (1)L任军当且仅当存在L’任p,使得xeL当且仅当〕今IV勺2…q侠<、,yl,…,yk>〔L。其中当k为偶数时,Q玫为V从;当k为奇数时,奶乍为〕气; (2)L任衅当且仅当存在L’〔P,使得x任L当且仅当V与1日与2…Q恤(x,yl,y:,一,yk>任L‘。其中当k为偶数时Q’yk为3从;当k为奇数时,Q玩为V从。 在wrathall定理中的日勺意指存在多项式尸,对于满足}引钱尸(}x})的某些y任乏’;V与意指存在多项式尸,对于满足}川(尸(}x})的所有y呀召长。 多项式谱系的这种表述形式,对于分析计算问题所处的层次常常更为方便。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条