1) Λ Set
Λ-集合
1.
The linear transformation of the block cipher Serpent is studied in detail through the introduction of a new concept called "influence set of a bit", and another concept called "Λ Set based on a nibble" is also introduced.
根据这些性质 ,并引进 Λ-集合和影响集的概念 ,得到了对于 3轮 Serpent加密算法实施 Square攻击的如下步骤 :1获取满足一定条件的 16个明文分组所对应的密文分组 ;2任意选取 12 8位的密钥 K3,并求其上述 16个密文分组的异或 ;3对所得到的 16个分组施行 S2 的逆变换 ;4求这 16个分组的按位异或 ,若为 0 ,则说明 2中所选取的 K3是正确的 ,否则返回 2 。
2) λ-externa l hyperconvex set
λ-外超凸集合
3) λ cut of a set
集合的λ-截点
1.
We transform it into the general parameter linear programming problem by means of the concept λ cut of a set,prove that the method is the extension of the method for the interval number linear programming with the concept of constraint satisfactory degree, and provide an efficient and satisfactory way for uncertainty linear programming problem.
对目标函数和约束条件均为集值的不确定线性规划问题 ,利用集合的λ-截点把集值线性规划问题转化为确定型的一般参数规划问题来解决 ,并证明了这种求解方法是区间线性规划基于满意度求解方法的推广。
4) Λ-set
Λ集
5) λ cut set
λ截集
1.
By introducing λ cut set,fuzzy numbers are converted into a series of interval numbers; by use of which,fuzzy stochastic reliability is calculated.
利用分解定理,取一系列λ截集,将模糊数转换为一系列区间数进行运算,得到了一种模糊随机可靠度的计算方法。
2.
For simplicity,the fuzzy stochastic reliability is calculated by transforming fuzzy numbers into a series of interval numbers via λ cut set theory.
为简化计算,将模糊数通过分解定理,取一系列λ截集,转换为一系列区间数进行计算。
6) λ-cut sets
λ-截集
1.
The characteristics of rough down branch fuzzy sets,rough up branch fuzzy sets and rough both-branch fuzzy sets are discussed;Depending on the introduction of λ-cut sets and λ-strong cut sets,the mathematics structure and characterizations of rough both-branch fuzzy sets are discussed.
在粗糙集和双枝模糊集的基础上,给出了粗双枝模糊集的概念;讨论了粗下枝模糊集,粗上枝模糊集和粗双枝模糊集的性质;利用模糊集的λ-截集及λ-强截集,讨论了粗双枝模糊集的数学结构及表示。
补充资料:spectral radiant intensity(Iλ)
分子式:
CAS号:
性质:波长为λ时,单位波长范围内的辐照强度(I)。其SI制单位为W/(m·s),常用单位为W/(nm·s)。
CAS号:
性质:波长为λ时,单位波长范围内的辐照强度(I)。其SI制单位为W/(m·s),常用单位为W/(nm·s)。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条