1) λ-cut set
λ–截集
1.
The method of λ-cut sets for the fuzzy-random variable was used to convert the problem of fuzzy-random probability into classical probability problem.
考虑两者的不确定性,把电压暂降引起的敏感设备故障定义为模糊随机事件,引入模糊随机变量的概念,建立电压暂降引起的敏感设备故障概率的模糊随机评估模型,利用模糊随机变量的λ–截集,把模糊随机变量的概率求解问题转化为普通随机变量的概率求解,保证了评估方法的可行性。
2) λ cut set
λ截集
1.
By introducing λ cut set,fuzzy numbers are converted into a series of interval numbers; by use of which,fuzzy stochastic reliability is calculated.
利用分解定理,取一系列λ截集,将模糊数转换为一系列区间数进行运算,得到了一种模糊随机可靠度的计算方法。
2.
For simplicity,the fuzzy stochastic reliability is calculated by transforming fuzzy numbers into a series of interval numbers via λ cut set theory.
为简化计算,将模糊数通过分解定理,取一系列λ截集,转换为一系列区间数进行计算。
3) λ-cut sets
λ-截集
1.
The characteristics of rough down branch fuzzy sets,rough up branch fuzzy sets and rough both-branch fuzzy sets are discussed;Depending on the introduction of λ-cut sets and λ-strong cut sets,the mathematics structure and characterizations of rough both-branch fuzzy sets are discussed.
在粗糙集和双枝模糊集的基础上,给出了粗双枝模糊集的概念;讨论了粗下枝模糊集,粗上枝模糊集和粗双枝模糊集的性质;利用模糊集的λ-截集及λ-强截集,讨论了粗双枝模糊集的数学结构及表示。
4) λ-strong cut sets
λ-强截集
1.
The characteristics of rough down branch fuzzy sets,rough up branch fuzzy sets and rough both-branch fuzzy sets are discussed;Depending on the introduction of λ-cut sets and λ-strong cut sets,the mathematics structure and characterizations of rough both-branch fuzzy sets are discussed.
在粗糙集和双枝模糊集的基础上,给出了粗双枝模糊集的概念;讨论了粗下枝模糊集,粗上枝模糊集和粗双枝模糊集的性质;利用模糊集的λ-截集及λ-强截集,讨论了粗双枝模糊集的数学结构及表示。
5) λ-lower cut set
λ-下截集
6) A-cut matrix
λ-截集矩阵
补充资料:断截截
1.形容剪裁利索。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条