1) RSA fixed point
RSA不动点
2) Dynamic RSA algorithm
动态RSA算法
3) fixed point
不动点
1.
A note on iterative approximation of fixed points of strictly pseudocontractive mapping;
关于严格伪压缩映象不动点迭代逼近的一点注记
2.
Approximations for the common fixed points of finite nonexpansive mappings in the uniformly convex Banach spaces;
一致凸Banach空间中有限个非扩张映射的公共不动点的逼近
3.
Fixed point theorems in a complete metric space;
完备度量空间上的不动点定理
4) fixed points
不动点
1.
The relation between solutions of a class of second order differential equation with the fixed points;
关于一类二阶微分方程的解和不动点的关系
2.
The fixed points of solutions of higher order complex differential equations with meromorphic coefficients;
亚纯函数系数高阶复域微分方程解的不动点
3.
The hyper order and fixed points of the derivatives of solutions for some higher order linear differential equation;
某类高阶线性微分方程解的导函数的不动点与超级
5) fixed-point
不动点
1.
Homotopy method for Nonconvex Brouwer Fixed-point Problem;
同伦方法求解非凸区域Brouwer不动点问题
2.
Some existence criteria of positive solution to the boundary value problem for nonlinear first-order dynamic equation were given by using Guo-Krasnoselskii s fixed-point theorem.
运用Guo-Krasnoselskii不动点定理,给出了非线性一阶动力方程边值问题正解的存在性标准。
3.
Three kinds of expansion mappings and relevant fixed-point theorems were initiated and proved by Wang Shangzhi.
3种膨胀映射的定义及其相应的不动点定理是由王尚志等首先提出和建立的。
6) fixed point set
不动点集
1.
An involution on a closed manifold with the fixed point set RP(1)∪P(1,8);
对合的不动点集为RP(1)∪P(1,8)的流形
2.
Iterative procedure of fixed point set for generalized lipschitz and multivalued asymptotically Φ-Hemicontractive mappings;
广义Lipschitz多值渐近Φ-半压缩映象不动点集的迭代程序
3.
(Mr,T)denotes the smooth involution with fixed point set F,If F= P(m,n)×HP(1),then(Mr,T)is bounded(m=8k, n>m and n is odd).
设(Mr,T)是一个在r维闭光滑流形上的不平凡光滑对合,当不动点集是P(m,n)×HP(1)且m与n满足一定条件时(Mr,T)协边于零,其中P(m,n)是Dold流形,HP(1)是四元数射影空间。
补充资料:Borel不动点定理
Borel不动点定理
Borel fixed - point theorem
B吮l不动点定理{B.限l五xe小州nt价e僻m二匆卿,T侧邓吧,f.01”聊叉B“狱班滋n卜.王j 设F为代数闭域kl二非空完全代数簇,正则地作用于犷上的连通可解代数群G(见变换的代数群扭1罗-braic goup of transformat一ons))在卜中有不动点.由这个定理可以推出代数群的B.耽l子群(Borel sub-grouP)是共扼的(Bore卜MOI洲)叉)B定理(Borel一Moro-zov theorem)),不动点定理是A.Borel([lj)证明的.Borel定理可以推广到任意域k(不一定代数封闭卜设F为在域k上定义的完全簇若连通可解k分裂群(人一sPlit grouP)G正则地作用在F上,则有理人点集V(k)或者为空集,或者它包含G的一个不动点.因此推广的Bore]子群共扼性定理是:若域k是完满的,则一个连通人定义的代数群H的极大连通可解北可裂子群,在H的k点构成的群中元素作用下互相共辘(f21),
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条